ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsupp GIF version

Theorem rexsupp 5682
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Assertion
Ref Expression
rexsupp (𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 𝑍𝜑)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑍(𝑥)

Proof of Theorem rexsupp
StepHypRef Expression
1 elpreima 5677 . . . . 5 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
2 eldifsn 3745 . . . . . . 7 ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝑍))
3 funfvex 5571 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
43funfni 5354 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
54biantrurd 305 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) ≠ 𝑍 ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝑍)))
62, 5bitr4id 199 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ (𝐹𝑥) ≠ 𝑍))
76pm5.32da 452 . . . . 5 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
81, 7bitrd 188 . . . 4 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
98anbi1d 465 . . 3 (𝐹 Fn 𝐴 → ((𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ 𝜑)))
10 anass 401 . . 3 (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) ≠ 𝑍𝜑)))
119, 10bitrdi 196 . 2 (𝐹 Fn 𝐴 → ((𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) ≠ 𝑍𝜑))))
1211rexbidv2 2497 1 (𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 𝑍𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  wne 2364  wrex 2473  Vcvv 2760  cdif 3150  {csn 3618  ccnv 4658  cima 4662   Fn wfn 5249  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator