Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexsupp | GIF version |
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
rexsupp | ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima 5615 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ {𝑍})))) | |
2 | eldifsn 3710 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ (V ∖ {𝑍}) ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝑍)) | |
3 | funfvex 5513 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
4 | 3 | funfni 5298 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
5 | 4 | biantrurd 303 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≠ 𝑍 ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝑍))) |
6 | 2, 5 | bitr4id 198 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (V ∖ {𝑍}) ↔ (𝐹‘𝑥) ≠ 𝑍)) |
7 | 6 | pm5.32da 449 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
8 | 1, 7 | bitrd 187 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
9 | 8 | anbi1d 462 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑))) |
10 | anass 399 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) | |
11 | 9, 10 | bitrdi 195 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑)))) |
12 | 11 | rexbidv2 2473 | 1 ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 ≠ wne 2340 ∃wrex 2449 Vcvv 2730 ∖ cdif 3118 {csn 3583 ◡ccnv 4610 “ cima 4614 Fn wfn 5193 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |