![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexsupp | GIF version |
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
rexsupp | ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima 5638 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ {𝑍})))) | |
2 | eldifsn 3721 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ (V ∖ {𝑍}) ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝑍)) | |
3 | funfvex 5534 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
4 | 3 | funfni 5318 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
5 | 4 | biantrurd 305 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≠ 𝑍 ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝑍))) |
6 | 2, 5 | bitr4id 199 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (V ∖ {𝑍}) ↔ (𝐹‘𝑥) ≠ 𝑍)) |
7 | 6 | pm5.32da 452 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
8 | 1, 7 | bitrd 188 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
9 | 8 | anbi1d 465 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑))) |
10 | anass 401 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) | |
11 | 9, 10 | bitrdi 196 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑)))) |
12 | 11 | rexbidv2 2480 | 1 ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 ≠ wne 2347 ∃wrex 2456 Vcvv 2739 ∖ cdif 3128 {csn 3594 ◡ccnv 4627 “ cima 4631 Fn wfn 5213 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |