| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexsupp | GIF version | ||
| Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| rexsupp | ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreima 5747 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ {𝑍})))) | |
| 2 | eldifsn 3794 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ (V ∖ {𝑍}) ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝑍)) | |
| 3 | funfvex 5640 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
| 4 | 3 | funfni 5419 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
| 5 | 4 | biantrurd 305 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≠ 𝑍 ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝑍))) |
| 6 | 2, 5 | bitr4id 199 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (V ∖ {𝑍}) ↔ (𝐹‘𝑥) ≠ 𝑍)) |
| 7 | 6 | pm5.32da 452 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
| 8 | 1, 7 | bitrd 188 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
| 9 | 8 | anbi1d 465 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑))) |
| 10 | anass 401 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) | |
| 11 | 9, 10 | bitrdi 196 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑)))) |
| 12 | 11 | rexbidv2 2533 | 1 ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 ≠ wne 2400 ∃wrex 2509 Vcvv 2799 ∖ cdif 3194 {csn 3666 ◡ccnv 4715 “ cima 4719 Fn wfn 5309 ‘cfv 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |