ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsupp GIF version

Theorem rexsupp 5498
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Assertion
Ref Expression
rexsupp (𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 𝑍𝜑)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑍(𝑥)

Proof of Theorem rexsupp
StepHypRef Expression
1 elpreima 5493 . . . . 5 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
2 funfvex 5392 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
32funfni 5181 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
43biantrurd 301 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) ≠ 𝑍 ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝑍)))
5 eldifsn 3616 . . . . . . 7 ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝑍))
64, 5syl6rbbr 198 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ (𝐹𝑥) ≠ 𝑍))
76pm5.32da 445 . . . . 5 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
81, 7bitrd 187 . . . 4 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
98anbi1d 458 . . 3 (𝐹 Fn 𝐴 → ((𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ 𝜑)))
10 anass 396 . . 3 (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) ≠ 𝑍𝜑)))
119, 10syl6bb 195 . 2 (𝐹 Fn 𝐴 → ((𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) ≠ 𝑍𝜑))))
1211rexbidv2 2414 1 (𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 𝑍𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1463  wne 2282  wrex 2391  Vcvv 2657  cdif 3034  {csn 3493  ccnv 4498  cima 4502   Fn wfn 5076  cfv 5081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-fv 5089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator