![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexsupp | GIF version |
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
rexsupp | ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima 5493 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ {𝑍})))) | |
2 | funfvex 5392 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ V) | |
3 | 2 | funfni 5181 | . . . . . . . 8 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ V) |
4 | 3 | biantrurd 301 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ≠ 𝑍 ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝑍))) |
5 | eldifsn 3616 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ (V ∖ {𝑍}) ↔ ((𝐹‘𝑥) ∈ V ∧ (𝐹‘𝑥) ≠ 𝑍)) | |
6 | 4, 5 | syl6rbbr 198 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∈ (V ∖ {𝑍}) ↔ (𝐹‘𝑥) ≠ 𝑍)) |
7 | 6 | pm5.32da 445 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
8 | 1, 7 | bitrd 187 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍))) |
9 | 8 | anbi1d 458 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑))) |
10 | anass 396 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) | |
11 | 9, 10 | syl6bb 195 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑)))) |
12 | 11 | rexbidv2 2414 | 1 ⊢ (𝐹 Fn 𝐴 → (∃𝑥 ∈ (◡𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≠ 𝑍 ∧ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 1463 ≠ wne 2282 ∃wrex 2391 Vcvv 2657 ∖ cdif 3034 {csn 3493 ◡ccnv 4498 “ cima 4502 Fn wfn 5076 ‘cfv 5081 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-v 2659 df-sbc 2879 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-fv 5089 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |