ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsupp GIF version

Theorem rexsupp 5686
Description: Existential quantification restricted to a support. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Assertion
Ref Expression
rexsupp (𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 𝑍𝜑)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑍(𝑥)

Proof of Theorem rexsupp
StepHypRef Expression
1 elpreima 5681 . . . . 5 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍}))))
2 eldifsn 3749 . . . . . . 7 ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝑍))
3 funfvex 5575 . . . . . . . . 9 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ V)
43funfni 5358 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹𝑥) ∈ V)
54biantrurd 305 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) ≠ 𝑍 ↔ ((𝐹𝑥) ∈ V ∧ (𝐹𝑥) ≠ 𝑍)))
62, 5bitr4id 199 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) ∈ (V ∖ {𝑍}) ↔ (𝐹𝑥) ≠ 𝑍))
76pm5.32da 452 . . . . 5 (𝐹 Fn 𝐴 → ((𝑥𝐴 ∧ (𝐹𝑥) ∈ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
81, 7bitrd 188 . . . 4 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ↔ (𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍)))
98anbi1d 465 . . 3 (𝐹 Fn 𝐴 → ((𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ 𝜑)))
10 anass 401 . . 3 (((𝑥𝐴 ∧ (𝐹𝑥) ≠ 𝑍) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) ≠ 𝑍𝜑)))
119, 10bitrdi 196 . 2 (𝐹 Fn 𝐴 → ((𝑥 ∈ (𝐹 “ (V ∖ {𝑍})) ∧ 𝜑) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) ≠ 𝑍𝜑))))
1211rexbidv2 2500 1 (𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 “ (V ∖ {𝑍}))𝜑 ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 𝑍𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167  wne 2367  wrex 2476  Vcvv 2763  cdif 3154  {csn 3622  ccnv 4662  cima 4666   Fn wfn 5253  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator