Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluz2 | Unicode version |
Description: Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show . (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluz2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 9479 | . 2 | |
2 | simp1 992 | . 2 | |
3 | eluz1 9478 | . . . 4 | |
4 | ibar 299 | . . . 4 | |
5 | 3, 4 | bitrd 187 | . . 3 |
6 | 3anass 977 | . . 3 | |
7 | 5, 6 | bitr4di 197 | . 2 |
8 | 1, 2, 7 | pm5.21nii 699 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 973 wcel 2141 class class class wbr 3987 cfv 5196 cle 7942 cz 9199 cuz 9474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-cnex 7852 ax-resscn 7853 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5853 df-neg 8080 df-z 9200 df-uz 9475 |
This theorem is referenced by: eluzuzle 9482 eluzelz 9483 eluzle 9486 uztrn 9490 eluzp1p1 9499 uznn0sub 9505 uz3m2nn 9519 1eluzge0 9520 2eluzge1 9522 raluz2 9525 rexuz2 9527 peano2uz 9529 nn0pzuz 9533 uzind4 9534 nn0ge2m1nnALT 9564 elfzuzb 9962 uzsubsubfz 9990 ige2m1fz 10053 4fvwrd4 10083 elfzo2 10093 elfzouz2 10104 fzossrbm1 10116 fzossfzop1 10155 ssfzo12bi 10168 elfzonelfzo 10173 elfzomelpfzo 10174 fzosplitprm1 10177 fzostep1 10180 fzind2 10182 flqword2 10232 fldiv4p1lem1div2 10248 uzennn 10379 seq3split 10422 iseqf1olemqk 10437 seq3f1olemqsumkj 10441 seq3f1olemqsumk 10442 seq3f1olemqsum 10443 bcval5 10684 seq3coll 10764 seq3shft 10789 resqrexlemoverl 10972 resqrexlemga 10974 fsum3cvg3 11346 fisumrev2 11396 isumshft 11440 cvgratnnlemseq 11476 cvgratnnlemabsle 11477 cvgratnnlemsumlt 11478 cvgratz 11482 oddge22np1 11827 nn0o 11853 suprzubdc 11894 zsupssdc 11896 uzwodc 11979 dvdsnprmd 12066 prmgt1 12073 oddprmgt2 12075 oddprmge3 12076 prm23ge5 12205 nninfdclemcl 12390 nninfdclemp1 12392 nninfdclemlt 12393 strleund 12493 strleun 12494 2logb9irr 13642 2logb9irrap 13648 lgsdilem2 13690 |
Copyright terms: Public domain | W3C validator |