Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluz2 | Unicode version |
Description: Membership in an upper set of integers. We use the fact that a function's value (under our function value definition) is empty outside of its domain to show . (Contributed by NM, 5-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
eluz2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 9492 | . 2 | |
2 | simp1 992 | . 2 | |
3 | eluz1 9491 | . . . 4 | |
4 | ibar 299 | . . . 4 | |
5 | 3, 4 | bitrd 187 | . . 3 |
6 | 3anass 977 | . . 3 | |
7 | 5, 6 | bitr4di 197 | . 2 |
8 | 1, 2, 7 | pm5.21nii 699 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 973 wcel 2141 class class class wbr 3989 cfv 5198 cle 7955 cz 9212 cuz 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-neg 8093 df-z 9213 df-uz 9488 |
This theorem is referenced by: eluzuzle 9495 eluzelz 9496 eluzle 9499 uztrn 9503 eluzp1p1 9512 uznn0sub 9518 uz3m2nn 9532 1eluzge0 9533 2eluzge1 9535 raluz2 9538 rexuz2 9540 peano2uz 9542 nn0pzuz 9546 uzind4 9547 nn0ge2m1nnALT 9577 elfzuzb 9975 uzsubsubfz 10003 ige2m1fz 10066 4fvwrd4 10096 elfzo2 10106 elfzouz2 10117 fzossrbm1 10129 fzossfzop1 10168 ssfzo12bi 10181 elfzonelfzo 10186 elfzomelpfzo 10187 fzosplitprm1 10190 fzostep1 10193 fzind2 10195 flqword2 10245 fldiv4p1lem1div2 10261 uzennn 10392 seq3split 10435 iseqf1olemqk 10450 seq3f1olemqsumkj 10454 seq3f1olemqsumk 10455 seq3f1olemqsum 10456 bcval5 10697 seq3coll 10777 seq3shft 10802 resqrexlemoverl 10985 resqrexlemga 10987 fsum3cvg3 11359 fisumrev2 11409 isumshft 11453 cvgratnnlemseq 11489 cvgratnnlemabsle 11490 cvgratnnlemsumlt 11491 cvgratz 11495 oddge22np1 11840 nn0o 11866 suprzubdc 11907 zsupssdc 11909 uzwodc 11992 dvdsnprmd 12079 prmgt1 12086 oddprmgt2 12088 oddprmge3 12089 prm23ge5 12218 nninfdclemcl 12403 nninfdclemp1 12405 nninfdclemlt 12406 strleund 12506 strleun 12507 2logb9irr 13683 2logb9irrap 13689 lgsdilem2 13731 |
Copyright terms: Public domain | W3C validator |