ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqbi Unicode version

Theorem flqbi 10184
Description: A condition equivalent to floor. (Contributed by Jim Kingdon, 9-Oct-2021.)
Assertion
Ref Expression
flqbi  |-  ( ( A  e.  QQ  /\  B  e.  ZZ )  ->  ( ( |_ `  A )  =  B  <-> 
( B  <_  A  /\  A  <  ( B  +  1 ) ) ) )

Proof of Theorem flqbi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 qre 9529 . . . 4  |-  ( A  e.  QQ  ->  A  e.  RR )
2 flval 10166 . . . . 5  |-  ( A  e.  RR  ->  ( |_ `  A )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
32eqeq1d 2166 . . . 4  |-  ( A  e.  RR  ->  (
( |_ `  A
)  =  B  <->  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 ) ) )  =  B ) )
41, 3syl 14 . . 3  |-  ( A  e.  QQ  ->  (
( |_ `  A
)  =  B  <->  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 ) ) )  =  B ) )
54adantr 274 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ )  ->  ( ( |_ `  A )  =  B  <-> 
( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  =  B ) )
6 qbtwnz 10146 . . . 4  |-  ( A  e.  QQ  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
7 breq1 3968 . . . . . 6  |-  ( x  =  B  ->  (
x  <_  A  <->  B  <_  A ) )
8 oveq1 5828 . . . . . . 7  |-  ( x  =  B  ->  (
x  +  1 )  =  ( B  + 
1 ) )
98breq2d 3977 . . . . . 6  |-  ( x  =  B  ->  ( A  <  ( x  + 
1 )  <->  A  <  ( B  +  1 ) ) )
107, 9anbi12d 465 . . . . 5  |-  ( x  =  B  ->  (
( x  <_  A  /\  A  <  ( x  +  1 ) )  <-> 
( B  <_  A  /\  A  <  ( B  +  1 ) ) ) )
1110riota2 5799 . . . 4  |-  ( ( B  e.  ZZ  /\  E! x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  ->  ( ( B  <_  A  /\  A  <  ( B  +  1 ) )  <->  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  +  1 ) ) )  =  B ) )
126, 11sylan2 284 . . 3  |-  ( ( B  e.  ZZ  /\  A  e.  QQ )  ->  ( ( B  <_  A  /\  A  <  ( B  +  1 ) )  <->  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )  =  B ) )
1312ancoms 266 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ )  ->  ( ( B  <_  A  /\  A  <  ( B  +  1 ) )  <->  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )  =  B ) )
145, 13bitr4d 190 1  |-  ( ( A  e.  QQ  /\  B  e.  ZZ )  ->  ( ( |_ `  A )  =  B  <-> 
( B  <_  A  /\  A  <  ( B  +  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   E!wreu 2437   class class class wbr 3965   ` cfv 5169   iota_crio 5776  (class class class)co 5821   RRcr 7726   1c1 7728    + caddc 7730    < clt 7907    <_ cle 7908   ZZcz 9162   QQcq 9523   |_cfl 10162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7818  ax-resscn 7819  ax-1cn 7820  ax-1re 7821  ax-icn 7822  ax-addcl 7823  ax-addrcl 7824  ax-mulcl 7825  ax-mulrcl 7826  ax-addcom 7827  ax-mulcom 7828  ax-addass 7829  ax-mulass 7830  ax-distr 7831  ax-i2m1 7832  ax-0lt1 7833  ax-1rid 7834  ax-0id 7835  ax-rnegex 7836  ax-precex 7837  ax-cnre 7838  ax-pre-ltirr 7839  ax-pre-ltwlin 7840  ax-pre-lttrn 7841  ax-pre-apti 7842  ax-pre-ltadd 7843  ax-pre-mulgt0 7844  ax-pre-mulext 7845  ax-arch 7846
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-po 4256  df-iso 4257  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-pnf 7909  df-mnf 7910  df-xr 7911  df-ltxr 7912  df-le 7913  df-sub 8043  df-neg 8044  df-reap 8445  df-ap 8452  df-div 8541  df-inn 8829  df-n0 9086  df-z 9163  df-q 9524  df-rp 9556  df-fl 10164
This theorem is referenced by:  flqbi2  10185  flqaddz  10191  ex-fl  13288
  Copyright terms: Public domain W3C validator