Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recriota | Unicode version |
Description: Two ways to express the reciprocal of a natural number. (Contributed by Jim Kingdon, 11-Jul-2021.) |
Ref | Expression |
---|---|
recriota |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pitore 7805 | . . 3 | |
2 | pitoregt0 7804 | . . 3 | |
3 | axprecex 7835 | . . 3 | |
4 | 1, 2, 3 | syl2anc 409 | . 2 |
5 | simprrr 535 | . . . 4 | |
6 | simprl 526 | . . . . 5 | |
7 | 1 | adantr 274 | . . . . . 6 |
8 | 2 | adantr 274 | . . . . . 6 |
9 | rereceu 7844 | . . . . . 6 | |
10 | 7, 8, 9 | syl2anc 409 | . . . . 5 |
11 | oveq2 5859 | . . . . . . 7 | |
12 | 11 | eqeq1d 2179 | . . . . . 6 |
13 | 12 | riota2 5829 | . . . . 5 |
14 | 6, 10, 13 | syl2anc 409 | . . . 4 |
15 | 5, 14 | mpbid 146 | . . 3 |
16 | 5 | oveq2d 5867 | . . . 4 |
17 | axresscn 7815 | . . . . . . . . . 10 | |
18 | 17, 7 | sselid 3145 | . . . . . . . . 9 |
19 | recnnre 7806 | . . . . . . . . . . 11 | |
20 | 19 | adantr 274 | . . . . . . . . . 10 |
21 | 17, 20 | sselid 3145 | . . . . . . . . 9 |
22 | axmulcom 7826 | . . . . . . . . 9 | |
23 | 18, 21, 22 | syl2anc 409 | . . . . . . . 8 |
24 | recidpirq 7813 | . . . . . . . . 9 | |
25 | 24 | adantr 274 | . . . . . . . 8 |
26 | 23, 25 | eqtr3d 2205 | . . . . . . 7 |
27 | 26 | oveq1d 5866 | . . . . . 6 |
28 | 17, 6 | sselid 3145 | . . . . . . 7 |
29 | axmulass 7828 | . . . . . . 7 | |
30 | 21, 18, 28, 29 | syl3anc 1233 | . . . . . 6 |
31 | ax1cn 7816 | . . . . . . 7 | |
32 | axmulcom 7826 | . . . . . . 7 | |
33 | 31, 28, 32 | sylancr 412 | . . . . . 6 |
34 | 27, 30, 33 | 3eqtr3d 2211 | . . . . 5 |
35 | ax1rid 7832 | . . . . . 6 | |
36 | 6, 35 | syl 14 | . . . . 5 |
37 | 34, 36 | eqtrd 2203 | . . . 4 |
38 | ax1rid 7832 | . . . . 5 | |
39 | 20, 38 | syl 14 | . . . 4 |
40 | 16, 37, 39 | 3eqtr3d 2211 | . . 3 |
41 | 15, 40 | eqtrd 2203 | . 2 |
42 | 4, 41 | rexlimddv 2592 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cab 2156 wrex 2449 wreu 2450 cop 3584 class class class wbr 3987 cfv 5196 crio 5806 (class class class)co 5851 c1o 6386 cec 6509 cnpi 7227 ceq 7234 crq 7239 cltq 7240 c1p 7247 cpp 7248 cer 7251 c0r 7253 cc 7765 cr 7766 cc0 7767 c1 7768 cltrr 7771 cmul 7772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-eprel 4272 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-irdg 6347 df-1o 6393 df-2o 6394 df-oadd 6397 df-omul 6398 df-er 6511 df-ec 6513 df-qs 6517 df-ni 7259 df-pli 7260 df-mi 7261 df-lti 7262 df-plpq 7299 df-mpq 7300 df-enq 7302 df-nqqs 7303 df-plqqs 7304 df-mqqs 7305 df-1nqqs 7306 df-rq 7307 df-ltnqqs 7308 df-enq0 7379 df-nq0 7380 df-0nq0 7381 df-plq0 7382 df-mq0 7383 df-inp 7421 df-i1p 7422 df-iplp 7423 df-imp 7424 df-iltp 7425 df-enr 7681 df-nr 7682 df-plr 7683 df-mr 7684 df-ltr 7685 df-0r 7686 df-1r 7687 df-m1r 7688 df-c 7773 df-0 7774 df-1 7775 df-r 7777 df-mul 7779 df-lt 7780 |
This theorem is referenced by: axcaucvglemcau 7853 |
Copyright terms: Public domain | W3C validator |