| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isgrpinv | Unicode version | ||
| Description: Properties showing that a
function |
| Ref | Expression |
|---|---|
| grpinv.b |
|
| grpinv.p |
|
| grpinv.u |
|
| grpinv.n |
|
| Ref | Expression |
|---|---|
| isgrpinv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b |
. . . . . . . . . 10
| |
| 2 | grpinv.p |
. . . . . . . . . 10
| |
| 3 | grpinv.u |
. . . . . . . . . 10
| |
| 4 | grpinv.n |
. . . . . . . . . 10
| |
| 5 | 1, 2, 3, 4 | grpinvval 13571 |
. . . . . . . . 9
|
| 6 | 5 | ad2antlr 489 |
. . . . . . . 8
|
| 7 | simpr 110 |
. . . . . . . . 9
| |
| 8 | simpllr 534 |
. . . . . . . . . . 11
| |
| 9 | simplr 528 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | ffvelcdmd 5770 |
. . . . . . . . . 10
|
| 11 | 1, 2, 3 | grpinveu 13566 |
. . . . . . . . . . 11
|
| 12 | 11 | ad4ant13 513 |
. . . . . . . . . 10
|
| 13 | oveq1 6007 |
. . . . . . . . . . . 12
| |
| 14 | 13 | eqeq1d 2238 |
. . . . . . . . . . 11
|
| 15 | 14 | riota2 5977 |
. . . . . . . . . 10
|
| 16 | 10, 12, 15 | syl2anc 411 |
. . . . . . . . 9
|
| 17 | 7, 16 | mpbid 147 |
. . . . . . . 8
|
| 18 | 6, 17 | eqtrd 2262 |
. . . . . . 7
|
| 19 | 18 | ex 115 |
. . . . . 6
|
| 20 | 19 | ralimdva 2597 |
. . . . 5
|
| 21 | 20 | impr 379 |
. . . 4
|
| 22 | 1, 4 | grpinvfng 13572 |
. . . . 5
|
| 23 | ffn 5472 |
. . . . . 6
| |
| 24 | 23 | ad2antrl 490 |
. . . . 5
|
| 25 | eqfnfv 5731 |
. . . . 5
| |
| 26 | 22, 24, 25 | syl2an2r 597 |
. . . 4
|
| 27 | 21, 26 | mpbird 167 |
. . 3
|
| 28 | 27 | ex 115 |
. 2
|
| 29 | 1, 4 | grpinvf 13575 |
. . . 4
|
| 30 | 1, 2, 3, 4 | grplinv 13578 |
. . . . 5
|
| 31 | 30 | ralrimiva 2603 |
. . . 4
|
| 32 | 29, 31 | jca 306 |
. . 3
|
| 33 | feq1 5455 |
. . . 4
| |
| 34 | fveq1 5625 |
. . . . . . 7
| |
| 35 | 34 | oveq1d 6015 |
. . . . . 6
|
| 36 | 35 | eqeq1d 2238 |
. . . . 5
|
| 37 | 36 | ralbidv 2530 |
. . . 4
|
| 38 | 33, 37 | anbi12d 473 |
. . 3
|
| 39 | 32, 38 | syl5ibcom 155 |
. 2
|
| 40 | 28, 39 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |