ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrpinv Unicode version

Theorem isgrpinv 13461
Description: Properties showing that a function  M is the inverse function of a group. (Contributed by NM, 7-Aug-2013.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpinv.b  |-  B  =  ( Base `  G
)
grpinv.p  |-  .+  =  ( +g  `  G )
grpinv.u  |-  .0.  =  ( 0g `  G )
grpinv.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
isgrpinv  |-  ( G  e.  Grp  ->  (
( M : B --> B  /\  A. x  e.  B  ( ( M `
 x )  .+  x )  =  .0.  )  <->  N  =  M
) )
Distinct variable groups:    x, B    x, G    x,  .0.    x,  .+    x, M   
x, N

Proof of Theorem isgrpinv
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
2 grpinv.p . . . . . . . . . 10  |-  .+  =  ( +g  `  G )
3 grpinv.u . . . . . . . . . 10  |-  .0.  =  ( 0g `  G )
4 grpinv.n . . . . . . . . . 10  |-  N  =  ( invg `  G )
51, 2, 3, 4grpinvval 13450 . . . . . . . . 9  |-  ( x  e.  B  ->  ( N `  x )  =  ( iota_ e  e.  B  ( e  .+  x )  =  .0.  ) )
65ad2antlr 489 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  ( N `  x )  =  ( iota_ e  e.  B  ( e  .+  x )  =  .0.  ) )
7 simpr 110 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  (
( M `  x
)  .+  x )  =  .0.  )
8 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  M : B --> B )
9 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  x  e.  B )
108, 9ffvelcdmd 5729 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  ( M `  x )  e.  B )
111, 2, 3grpinveu 13445 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  E! e  e.  B  ( e  .+  x
)  =  .0.  )
1211ad4ant13 513 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  E! e  e.  B  (
e  .+  x )  =  .0.  )
13 oveq1 5964 . . . . . . . . . . . 12  |-  ( e  =  ( M `  x )  ->  (
e  .+  x )  =  ( ( M `
 x )  .+  x ) )
1413eqeq1d 2215 . . . . . . . . . . 11  |-  ( e  =  ( M `  x )  ->  (
( e  .+  x
)  =  .0.  <->  ( ( M `  x )  .+  x )  =  .0.  ) )
1514riota2 5935 . . . . . . . . . 10  |-  ( ( ( M `  x
)  e.  B  /\  E! e  e.  B  ( e  .+  x
)  =  .0.  )  ->  ( ( ( M `
 x )  .+  x )  =  .0.  <->  (
iota_ e  e.  B  ( e  .+  x
)  =  .0.  )  =  ( M `  x ) ) )
1610, 12, 15syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  (
( ( M `  x )  .+  x
)  =  .0.  <->  ( iota_ e  e.  B  ( e 
.+  x )  =  .0.  )  =  ( M `  x ) ) )
177, 16mpbid 147 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  ( iota_ e  e.  B  ( e  .+  x )  =  .0.  )  =  ( M `  x
) )
186, 17eqtrd 2239 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  ( N `  x )  =  ( M `  x ) )
1918ex 115 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  M : B --> B )  /\  x  e.  B
)  ->  ( (
( M `  x
)  .+  x )  =  .0.  ->  ( N `  x )  =  ( M `  x ) ) )
2019ralimdva 2574 . . . . 5  |-  ( ( G  e.  Grp  /\  M : B --> B )  ->  ( A. x  e.  B  ( ( M `  x )  .+  x )  =  .0. 
->  A. x  e.  B  ( N `  x )  =  ( M `  x ) ) )
2120impr 379 . . . 4  |-  ( ( G  e.  Grp  /\  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) )  ->  A. x  e.  B  ( N `  x )  =  ( M `  x ) )
221, 4grpinvfng 13451 . . . . 5  |-  ( G  e.  Grp  ->  N  Fn  B )
23 ffn 5435 . . . . . 6  |-  ( M : B --> B  ->  M  Fn  B )
2423ad2antrl 490 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) )  ->  M  Fn  B )
25 eqfnfv 5690 . . . . 5  |-  ( ( N  Fn  B  /\  M  Fn  B )  ->  ( N  =  M  <->  A. x  e.  B  ( N `  x )  =  ( M `  x ) ) )
2622, 24, 25syl2an2r 595 . . . 4  |-  ( ( G  e.  Grp  /\  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) )  -> 
( N  =  M  <->  A. x  e.  B  ( N `  x )  =  ( M `  x ) ) )
2721, 26mpbird 167 . . 3  |-  ( ( G  e.  Grp  /\  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) )  ->  N  =  M )
2827ex 115 . 2  |-  ( G  e.  Grp  ->  (
( M : B --> B  /\  A. x  e.  B  ( ( M `
 x )  .+  x )  =  .0.  )  ->  N  =  M ) )
291, 4grpinvf 13454 . . . 4  |-  ( G  e.  Grp  ->  N : B --> B )
301, 2, 3, 4grplinv 13457 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( N `  x )  .+  x
)  =  .0.  )
3130ralrimiva 2580 . . . 4  |-  ( G  e.  Grp  ->  A. x  e.  B  ( ( N `  x )  .+  x )  =  .0.  )
3229, 31jca 306 . . 3  |-  ( G  e.  Grp  ->  ( N : B --> B  /\  A. x  e.  B  ( ( N `  x
)  .+  x )  =  .0.  ) )
33 feq1 5418 . . . 4  |-  ( N  =  M  ->  ( N : B --> B  <->  M : B
--> B ) )
34 fveq1 5588 . . . . . . 7  |-  ( N  =  M  ->  ( N `  x )  =  ( M `  x ) )
3534oveq1d 5972 . . . . . 6  |-  ( N  =  M  ->  (
( N `  x
)  .+  x )  =  ( ( M `
 x )  .+  x ) )
3635eqeq1d 2215 . . . . 5  |-  ( N  =  M  ->  (
( ( N `  x )  .+  x
)  =  .0.  <->  ( ( M `  x )  .+  x )  =  .0.  ) )
3736ralbidv 2507 . . . 4  |-  ( N  =  M  ->  ( A. x  e.  B  ( ( N `  x )  .+  x
)  =  .0.  <->  A. x  e.  B  ( ( M `  x )  .+  x )  =  .0.  ) )
3833, 37anbi12d 473 . . 3  |-  ( N  =  M  ->  (
( N : B --> B  /\  A. x  e.  B  ( ( N `
 x )  .+  x )  =  .0.  )  <->  ( M : B
--> B  /\  A. x  e.  B  ( ( M `  x )  .+  x )  =  .0.  ) ) )
3932, 38syl5ibcom 155 . 2  |-  ( G  e.  Grp  ->  ( N  =  M  ->  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) ) )
4028, 39impbid 129 1  |-  ( G  e.  Grp  ->  (
( M : B --> B  /\  A. x  e.  B  ( ( M `
 x )  .+  x )  =  .0.  )  <->  N  =  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   A.wral 2485   E!wreu 2487    Fn wfn 5275   -->wf 5276   ` cfv 5280   iota_crio 5911  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   0gc0g 13163   Grpcgrp 13407   invgcminusg 13408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator