| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isgrpinv | Unicode version | ||
| Description: Properties showing that a
function |
| Ref | Expression |
|---|---|
| grpinv.b |
|
| grpinv.p |
|
| grpinv.u |
|
| grpinv.n |
|
| Ref | Expression |
|---|---|
| isgrpinv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b |
. . . . . . . . . 10
| |
| 2 | grpinv.p |
. . . . . . . . . 10
| |
| 3 | grpinv.u |
. . . . . . . . . 10
| |
| 4 | grpinv.n |
. . . . . . . . . 10
| |
| 5 | 1, 2, 3, 4 | grpinvval 13450 |
. . . . . . . . 9
|
| 6 | 5 | ad2antlr 489 |
. . . . . . . 8
|
| 7 | simpr 110 |
. . . . . . . . 9
| |
| 8 | simpllr 534 |
. . . . . . . . . . 11
| |
| 9 | simplr 528 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | ffvelcdmd 5729 |
. . . . . . . . . 10
|
| 11 | 1, 2, 3 | grpinveu 13445 |
. . . . . . . . . . 11
|
| 12 | 11 | ad4ant13 513 |
. . . . . . . . . 10
|
| 13 | oveq1 5964 |
. . . . . . . . . . . 12
| |
| 14 | 13 | eqeq1d 2215 |
. . . . . . . . . . 11
|
| 15 | 14 | riota2 5935 |
. . . . . . . . . 10
|
| 16 | 10, 12, 15 | syl2anc 411 |
. . . . . . . . 9
|
| 17 | 7, 16 | mpbid 147 |
. . . . . . . 8
|
| 18 | 6, 17 | eqtrd 2239 |
. . . . . . 7
|
| 19 | 18 | ex 115 |
. . . . . 6
|
| 20 | 19 | ralimdva 2574 |
. . . . 5
|
| 21 | 20 | impr 379 |
. . . 4
|
| 22 | 1, 4 | grpinvfng 13451 |
. . . . 5
|
| 23 | ffn 5435 |
. . . . . 6
| |
| 24 | 23 | ad2antrl 490 |
. . . . 5
|
| 25 | eqfnfv 5690 |
. . . . 5
| |
| 26 | 22, 24, 25 | syl2an2r 595 |
. . . 4
|
| 27 | 21, 26 | mpbird 167 |
. . 3
|
| 28 | 27 | ex 115 |
. 2
|
| 29 | 1, 4 | grpinvf 13454 |
. . . 4
|
| 30 | 1, 2, 3, 4 | grplinv 13457 |
. . . . 5
|
| 31 | 30 | ralrimiva 2580 |
. . . 4
|
| 32 | 29, 31 | jca 306 |
. . 3
|
| 33 | feq1 5418 |
. . . 4
| |
| 34 | fveq1 5588 |
. . . . . . 7
| |
| 35 | 34 | oveq1d 5972 |
. . . . . 6
|
| 36 | 35 | eqeq1d 2215 |
. . . . 5
|
| 37 | 36 | ralbidv 2507 |
. . . 4
|
| 38 | 33, 37 | anbi12d 473 |
. . 3
|
| 39 | 32, 38 | syl5ibcom 155 |
. 2
|
| 40 | 28, 39 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |