ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrpinv Unicode version

Theorem isgrpinv 13126
Description: Properties showing that a function  M is the inverse function of a group. (Contributed by NM, 7-Aug-2013.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpinv.b  |-  B  =  ( Base `  G
)
grpinv.p  |-  .+  =  ( +g  `  G )
grpinv.u  |-  .0.  =  ( 0g `  G )
grpinv.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
isgrpinv  |-  ( G  e.  Grp  ->  (
( M : B --> B  /\  A. x  e.  B  ( ( M `
 x )  .+  x )  =  .0.  )  <->  N  =  M
) )
Distinct variable groups:    x, B    x, G    x,  .0.    x,  .+    x, M   
x, N

Proof of Theorem isgrpinv
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
2 grpinv.p . . . . . . . . . 10  |-  .+  =  ( +g  `  G )
3 grpinv.u . . . . . . . . . 10  |-  .0.  =  ( 0g `  G )
4 grpinv.n . . . . . . . . . 10  |-  N  =  ( invg `  G )
51, 2, 3, 4grpinvval 13115 . . . . . . . . 9  |-  ( x  e.  B  ->  ( N `  x )  =  ( iota_ e  e.  B  ( e  .+  x )  =  .0.  ) )
65ad2antlr 489 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  ( N `  x )  =  ( iota_ e  e.  B  ( e  .+  x )  =  .0.  ) )
7 simpr 110 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  (
( M `  x
)  .+  x )  =  .0.  )
8 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  M : B --> B )
9 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  x  e.  B )
108, 9ffvelcdmd 5694 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  ( M `  x )  e.  B )
111, 2, 3grpinveu 13110 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  E! e  e.  B  ( e  .+  x
)  =  .0.  )
1211ad4ant13 513 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  E! e  e.  B  (
e  .+  x )  =  .0.  )
13 oveq1 5925 . . . . . . . . . . . 12  |-  ( e  =  ( M `  x )  ->  (
e  .+  x )  =  ( ( M `
 x )  .+  x ) )
1413eqeq1d 2202 . . . . . . . . . . 11  |-  ( e  =  ( M `  x )  ->  (
( e  .+  x
)  =  .0.  <->  ( ( M `  x )  .+  x )  =  .0.  ) )
1514riota2 5896 . . . . . . . . . 10  |-  ( ( ( M `  x
)  e.  B  /\  E! e  e.  B  ( e  .+  x
)  =  .0.  )  ->  ( ( ( M `
 x )  .+  x )  =  .0.  <->  (
iota_ e  e.  B  ( e  .+  x
)  =  .0.  )  =  ( M `  x ) ) )
1610, 12, 15syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  (
( ( M `  x )  .+  x
)  =  .0.  <->  ( iota_ e  e.  B  ( e 
.+  x )  =  .0.  )  =  ( M `  x ) ) )
177, 16mpbid 147 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  ( iota_ e  e.  B  ( e  .+  x )  =  .0.  )  =  ( M `  x
) )
186, 17eqtrd 2226 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  M : B
--> B )  /\  x  e.  B )  /\  (
( M `  x
)  .+  x )  =  .0.  )  ->  ( N `  x )  =  ( M `  x ) )
1918ex 115 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  M : B --> B )  /\  x  e.  B
)  ->  ( (
( M `  x
)  .+  x )  =  .0.  ->  ( N `  x )  =  ( M `  x ) ) )
2019ralimdva 2561 . . . . 5  |-  ( ( G  e.  Grp  /\  M : B --> B )  ->  ( A. x  e.  B  ( ( M `  x )  .+  x )  =  .0. 
->  A. x  e.  B  ( N `  x )  =  ( M `  x ) ) )
2120impr 379 . . . 4  |-  ( ( G  e.  Grp  /\  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) )  ->  A. x  e.  B  ( N `  x )  =  ( M `  x ) )
221, 4grpinvfng 13116 . . . . 5  |-  ( G  e.  Grp  ->  N  Fn  B )
23 ffn 5403 . . . . . 6  |-  ( M : B --> B  ->  M  Fn  B )
2423ad2antrl 490 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) )  ->  M  Fn  B )
25 eqfnfv 5655 . . . . 5  |-  ( ( N  Fn  B  /\  M  Fn  B )  ->  ( N  =  M  <->  A. x  e.  B  ( N `  x )  =  ( M `  x ) ) )
2622, 24, 25syl2an2r 595 . . . 4  |-  ( ( G  e.  Grp  /\  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) )  -> 
( N  =  M  <->  A. x  e.  B  ( N `  x )  =  ( M `  x ) ) )
2721, 26mpbird 167 . . 3  |-  ( ( G  e.  Grp  /\  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) )  ->  N  =  M )
2827ex 115 . 2  |-  ( G  e.  Grp  ->  (
( M : B --> B  /\  A. x  e.  B  ( ( M `
 x )  .+  x )  =  .0.  )  ->  N  =  M ) )
291, 4grpinvf 13119 . . . 4  |-  ( G  e.  Grp  ->  N : B --> B )
301, 2, 3, 4grplinv 13122 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( ( N `  x )  .+  x
)  =  .0.  )
3130ralrimiva 2567 . . . 4  |-  ( G  e.  Grp  ->  A. x  e.  B  ( ( N `  x )  .+  x )  =  .0.  )
3229, 31jca 306 . . 3  |-  ( G  e.  Grp  ->  ( N : B --> B  /\  A. x  e.  B  ( ( N `  x
)  .+  x )  =  .0.  ) )
33 feq1 5386 . . . 4  |-  ( N  =  M  ->  ( N : B --> B  <->  M : B
--> B ) )
34 fveq1 5553 . . . . . . 7  |-  ( N  =  M  ->  ( N `  x )  =  ( M `  x ) )
3534oveq1d 5933 . . . . . 6  |-  ( N  =  M  ->  (
( N `  x
)  .+  x )  =  ( ( M `
 x )  .+  x ) )
3635eqeq1d 2202 . . . . 5  |-  ( N  =  M  ->  (
( ( N `  x )  .+  x
)  =  .0.  <->  ( ( M `  x )  .+  x )  =  .0.  ) )
3736ralbidv 2494 . . . 4  |-  ( N  =  M  ->  ( A. x  e.  B  ( ( N `  x )  .+  x
)  =  .0.  <->  A. x  e.  B  ( ( M `  x )  .+  x )  =  .0.  ) )
3833, 37anbi12d 473 . . 3  |-  ( N  =  M  ->  (
( N : B --> B  /\  A. x  e.  B  ( ( N `
 x )  .+  x )  =  .0.  )  <->  ( M : B
--> B  /\  A. x  e.  B  ( ( M `  x )  .+  x )  =  .0.  ) ) )
3932, 38syl5ibcom 155 . 2  |-  ( G  e.  Grp  ->  ( N  =  M  ->  ( M : B --> B  /\  A. x  e.  B  ( ( M `  x
)  .+  x )  =  .0.  ) ) )
4028, 39impbid 129 1  |-  ( G  e.  Grp  ->  (
( M : B --> B  /\  A. x  e.  B  ( ( M `
 x )  .+  x )  =  .0.  )  <->  N  =  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E!wreu 2474    Fn wfn 5249   -->wf 5250   ` cfv 5254   iota_crio 5872  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Grpcgrp 13072   invgcminusg 13073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator