ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzouz Unicode version

Theorem elfzouz 10059
Description: Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
elfzouz  |-  ( K  e.  ( M..^ N
)  ->  K  e.  ( ZZ>= `  M )
)

Proof of Theorem elfzouz
StepHypRef Expression
1 elfzo2 10058 . 2  |-  ( K  e.  ( M..^ N
)  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ  /\  K  <  N ) )
21simp1bi 997 1  |-  ( K  e.  ( M..^ N
)  ->  K  e.  ( ZZ>= `  M )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2128   class class class wbr 3967   ` cfv 5172  (class class class)co 5826    < clt 7914   ZZcz 9172   ZZ>=cuz 9444  ..^cfzo 10050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-addcom 7834  ax-addass 7836  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-0id 7842  ax-rnegex 7843  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-ltadd 7850
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-inn 8839  df-n0 9096  df-z 9173  df-uz 9445  df-fz 9919  df-fzo 10051
This theorem is referenced by:  elfzofz  10070  fzouzsplit  10087  elfzo0  10090  elfzonn0  10094  exfzdc  10148  seq3clss  10375  seq3caopr3  10389  seq3caopr2  10390  seq3id3  10415  ser3ge0  10425  geosergap  11414  prodfap0  11453  prodfrecap  11454  eulerthlemrprm  12119  eulerthlema  12120  trilpolemeq1  13682
  Copyright terms: Public domain W3C validator