ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgcmn Unicode version

Theorem srgcmn 13462
Description: A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
Assertion
Ref Expression
srgcmn  |-  ( R  e. SRing  ->  R  e. CMnd )

Proof of Theorem srgcmn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2193 . . 3  |-  (mulGrp `  R )  =  (mulGrp `  R )
3 eqid 2193 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
4 eqid 2193 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2193 . . 3  |-  ( 0g
`  R )  =  ( 0g `  R
)
61, 2, 3, 4, 5issrg 13461 . 2  |-  ( R  e. SRing 
<->  ( R  e. CMnd  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  ( Base `  R
) ( A. y  e.  ( Base `  R
) A. z  e.  ( Base `  R
) ( ( x ( .r `  R
) ( y ( +g  `  R ) z ) )  =  ( ( x ( .r `  R ) y ) ( +g  `  R ) ( x ( .r `  R
) z ) )  /\  ( ( x ( +g  `  R
) y ) ( .r `  R ) z )  =  ( ( x ( .r
`  R ) z ) ( +g  `  R
) ( y ( .r `  R ) z ) ) )  /\  ( ( ( 0g `  R ) ( .r `  R
) x )  =  ( 0g `  R
)  /\  ( x
( .r `  R
) ( 0g `  R ) )  =  ( 0g `  R
) ) ) ) )
76simp1bi 1014 1  |-  ( R  e. SRing  ->  R  e. CMnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   0gc0g 12867   Mndcmnd 12997  CMndccmn 13354  mulGrpcmgp 13416  SRingcsrg 13459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-0g 12869  df-srg 13460
This theorem is referenced by:  srgmnd  13463  srgcom  13479
  Copyright terms: Public domain W3C validator