| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringgrp | Unicode version | ||
| Description: A ring is a group. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| ringgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. . 3
| |
| 2 | eqid 2229 |
. . 3
| |
| 3 | eqid 2229 |
. . 3
| |
| 4 | eqid 2229 |
. . 3
| |
| 5 | 1, 2, 3, 4 | isring 13958 |
. 2
|
| 6 | 5 | simp1bi 1036 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-mulr 13119 df-ring 13956 |
| This theorem is referenced by: ringgrpd 13963 ringmnd 13964 ring0cl 13979 ringacl 13988 ringcom 13989 ringabl 13990 ringlz 14001 ringrz 14002 ringnegl 14009 ringnegr 14010 ringmneg1 14011 ringmneg2 14012 ringm2neg 14013 ringsubdi 14014 ringsubdir 14015 mulgass2 14016 ringlghm 14019 ringrghm 14020 ringressid 14021 imasring 14022 opprring 14037 dvdsrneg 14061 unitnegcl 14088 dvrdir 14101 dfrhm2 14112 isrhm 14116 isrhmd 14124 rhmfn 14130 rhmval 14131 subrgsubg 14185 lmodfgrp 14254 lmod0vs 14279 lmodvsneg 14289 lmodsubvs 14301 lmodsubdi 14302 lmodsubdir 14303 rmodislmodlem 14308 rmodislmod 14309 issubrgd 14410 lidlsubg 14444 cnfld0 14529 cnfldneg 14531 cnfldsub 14533 cnsubglem 14537 zringgrp 14553 mulgrhm 14567 zrhmulg 14578 |
| Copyright terms: Public domain | W3C validator |