| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringgrp | Unicode version | ||
| Description: A ring is a group. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| ringgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. . 3
| |
| 2 | eqid 2205 |
. . 3
| |
| 3 | eqid 2205 |
. . 3
| |
| 4 | eqid 2205 |
. . 3
| |
| 5 | 1, 2, 3, 4 | isring 13762 |
. 2
|
| 6 | 5 | simp1bi 1015 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 df-inn 9037 df-2 9095 df-3 9096 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-mulr 12923 df-ring 13760 |
| This theorem is referenced by: ringgrpd 13767 ringmnd 13768 ring0cl 13783 ringacl 13792 ringcom 13793 ringabl 13794 ringlz 13805 ringrz 13806 ringnegl 13813 ringnegr 13814 ringmneg1 13815 ringmneg2 13816 ringm2neg 13817 ringsubdi 13818 ringsubdir 13819 mulgass2 13820 ringlghm 13823 ringrghm 13824 ringressid 13825 imasring 13826 opprring 13841 dvdsrneg 13865 unitnegcl 13892 dvrdir 13905 dfrhm2 13916 isrhm 13920 isrhmd 13928 rhmfn 13934 rhmval 13935 subrgsubg 13989 lmodfgrp 14058 lmod0vs 14083 lmodvsneg 14093 lmodsubvs 14105 lmodsubdi 14106 lmodsubdir 14107 rmodislmodlem 14112 rmodislmod 14113 issubrgd 14214 lidlsubg 14248 cnfld0 14333 cnfldneg 14335 cnfldsub 14337 cnsubglem 14341 zringgrp 14357 mulgrhm 14371 zrhmulg 14382 |
| Copyright terms: Public domain | W3C validator |