| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringgrp | Unicode version | ||
| Description: A ring is a group. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| ringgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. . 3
| |
| 2 | eqid 2207 |
. . 3
| |
| 3 | eqid 2207 |
. . 3
| |
| 4 | eqid 2207 |
. . 3
| |
| 5 | 1, 2, 3, 4 | isring 13877 |
. 2
|
| 6 | 5 | simp1bi 1015 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-mulr 13038 df-ring 13875 |
| This theorem is referenced by: ringgrpd 13882 ringmnd 13883 ring0cl 13898 ringacl 13907 ringcom 13908 ringabl 13909 ringlz 13920 ringrz 13921 ringnegl 13928 ringnegr 13929 ringmneg1 13930 ringmneg2 13931 ringm2neg 13932 ringsubdi 13933 ringsubdir 13934 mulgass2 13935 ringlghm 13938 ringrghm 13939 ringressid 13940 imasring 13941 opprring 13956 dvdsrneg 13980 unitnegcl 14007 dvrdir 14020 dfrhm2 14031 isrhm 14035 isrhmd 14043 rhmfn 14049 rhmval 14050 subrgsubg 14104 lmodfgrp 14173 lmod0vs 14198 lmodvsneg 14208 lmodsubvs 14220 lmodsubdi 14221 lmodsubdir 14222 rmodislmodlem 14227 rmodislmod 14228 issubrgd 14329 lidlsubg 14363 cnfld0 14448 cnfldneg 14450 cnfldsub 14452 cnsubglem 14456 zringgrp 14472 mulgrhm 14486 zrhmulg 14497 |
| Copyright terms: Public domain | W3C validator |