ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgbas Unicode version

Theorem subgbas 13485
Description: The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subggrp.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
subgbas  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)

Proof of Theorem subgbas
StepHypRef Expression
1 subggrp.h . . 3  |-  H  =  ( Gs  S )
21a1i 9 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
3 eqid 2204 . . 3  |-  ( Base `  G )  =  (
Base `  G )
43a1i 9 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( Base `  G )  =  (
Base `  G )
)
53issubg 13480 . . 3  |-  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  ( Base `  G )  /\  ( Gs  S )  e.  Grp ) )
65simp1bi 1014 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
73subgss 13481 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
82, 4, 6, 7ressbas2d 12871 1  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175    C_ wss 3165   ` cfv 5270  (class class class)co 5943   Basecbs 12803   ↾s cress 12804   Grpcgrp 13303  SubGrpcsubg 13474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-inn 9036  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-subg 13477
This theorem is referenced by:  subg0  13487  subginv  13488  subg0cl  13489  subginvcl  13490  subgcl  13491  subgsub  13493  subgmulg  13495  issubg2m  13496  subsubg  13504  nmznsg  13520  subgabl  13639  subrngbas  13939  issubrng2  13943  subrgbas  13963  issubrg2  13974
  Copyright terms: Public domain W3C validator