| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subgbas | Unicode version | ||
| Description: The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subggrp.h |
|
| Ref | Expression |
|---|---|
| subgbas |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subggrp.h |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | eqid 2229 |
. . 3
| |
| 4 | 3 | a1i 9 |
. 2
|
| 5 | 3 | issubg 13705 |
. . 3
|
| 6 | 5 | simp1bi 1036 |
. 2
|
| 7 | 3 | subgss 13706 |
. 2
|
| 8 | 2, 4, 6, 7 | ressbas2d 13096 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-inn 9107 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-subg 13702 |
| This theorem is referenced by: subg0 13712 subginv 13713 subg0cl 13714 subginvcl 13715 subgcl 13716 subgsub 13718 subgmulg 13720 issubg2m 13721 subsubg 13729 nmznsg 13745 subgabl 13864 subrngbas 14164 issubrng2 14168 subrgbas 14188 issubrg2 14199 |
| Copyright terms: Public domain | W3C validator |