ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos11 Unicode version

Theorem cos11 13341
Description: Cosine is one-to-one over the closed interval from  0 to  pi. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.)
Assertion
Ref Expression
cos11  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( A  =  B  <->  ( cos `  A
)  =  ( cos `  B ) ) )

Proof of Theorem cos11
StepHypRef Expression
1 fveq2 5481 . 2  |-  ( A  =  B  ->  ( cos `  A )  =  ( cos `  B
) )
2 simpll 519 . . . . . . . 8  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  /\  A  < 
B )  ->  A  e.  ( 0 [,] pi ) )
3 simplr 520 . . . . . . . 8  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  /\  A  < 
B )  ->  B  e.  ( 0 [,] pi ) )
4 simpr 109 . . . . . . . 8  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  /\  A  < 
B )  ->  A  <  B )
52, 3, 4cosordlem 13337 . . . . . . 7  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  /\  A  < 
B )  ->  ( cos `  B )  < 
( cos `  A
) )
65ex 114 . . . . . 6  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( A  < 
B  ->  ( cos `  B )  <  ( cos `  A ) ) )
7 simplr 520 . . . . . . . 8  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  /\  B  < 
A )  ->  B  e.  ( 0 [,] pi ) )
8 simpll 519 . . . . . . . 8  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  /\  B  < 
A )  ->  A  e.  ( 0 [,] pi ) )
9 simpr 109 . . . . . . . 8  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  /\  B  < 
A )  ->  B  <  A )
107, 8, 9cosordlem 13337 . . . . . . 7  |-  ( ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  /\  B  < 
A )  ->  ( cos `  A )  < 
( cos `  B
) )
1110ex 114 . . . . . 6  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( B  < 
A  ->  ( cos `  A )  <  ( cos `  B ) ) )
126, 11orim12d 776 . . . . 5  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( ( A  <  B  \/  B  <  A )  ->  (
( cos `  B
)  <  ( cos `  A )  \/  ( cos `  A )  < 
( cos `  B
) ) ) )
13 0re 7891 . . . . . . . . 9  |-  0  e.  RR
14 pire 13274 . . . . . . . . 9  |-  pi  e.  RR
1513, 14elicc2i 9867 . . . . . . . 8  |-  ( A  e.  ( 0 [,] pi )  <->  ( A  e.  RR  /\  0  <_  A  /\  A  <_  pi ) )
1615simp1bi 1001 . . . . . . 7  |-  ( A  e.  ( 0 [,] pi )  ->  A  e.  RR )
1716adantr 274 . . . . . 6  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  A  e.  RR )
1813, 14elicc2i 9867 . . . . . . . 8  |-  ( B  e.  ( 0 [,] pi )  <->  ( B  e.  RR  /\  0  <_  B  /\  B  <_  pi ) )
1918simp1bi 1001 . . . . . . 7  |-  ( B  e.  ( 0 [,] pi )  ->  B  e.  RR )
2019adantl 275 . . . . . 6  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  B  e.  RR )
21 reaplt 8478 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/  B  < 
A ) ) )
2217, 20, 21syl2anc 409 . . . . 5  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( A #  B  <->  ( A  <  B  \/  B  <  A ) ) )
2317recoscld 11655 . . . . . . 7  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( cos `  A
)  e.  RR )
2420recoscld 11655 . . . . . . 7  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( cos `  B
)  e.  RR )
25 reaplt 8478 . . . . . . 7  |-  ( ( ( cos `  A
)  e.  RR  /\  ( cos `  B )  e.  RR )  -> 
( ( cos `  A
) #  ( cos `  B
)  <->  ( ( cos `  A )  <  ( cos `  B )  \/  ( cos `  B
)  <  ( cos `  A ) ) ) )
2623, 24, 25syl2anc 409 . . . . . 6  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( ( cos `  A ) #  ( cos `  B )  <->  ( ( cos `  A )  < 
( cos `  B
)  \/  ( cos `  B )  <  ( cos `  A ) ) ) )
27 orcom 718 . . . . . 6  |-  ( ( ( cos `  A
)  <  ( cos `  B )  \/  ( cos `  B )  < 
( cos `  A
) )  <->  ( ( cos `  B )  < 
( cos `  A
)  \/  ( cos `  A )  <  ( cos `  B ) ) )
2826, 27bitrdi 195 . . . . 5  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( ( cos `  A ) #  ( cos `  B )  <->  ( ( cos `  B )  < 
( cos `  A
)  \/  ( cos `  A )  <  ( cos `  B ) ) ) )
2912, 22, 283imtr4d 202 . . . 4  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( A #  B  ->  ( cos `  A
) #  ( cos `  B
) ) )
3029con3d 621 . . 3  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( -.  ( cos `  A ) #  ( cos `  B )  ->  -.  A #  B
) )
3123recnd 7919 . . . 4  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( cos `  A
)  e.  CC )
3224recnd 7919 . . . 4  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( cos `  B
)  e.  CC )
33 apti 8512 . . . 4  |-  ( ( ( cos `  A
)  e.  CC  /\  ( cos `  B )  e.  CC )  -> 
( ( cos `  A
)  =  ( cos `  B )  <->  -.  ( cos `  A ) #  ( cos `  B ) ) )
3431, 32, 33syl2anc 409 . . 3  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( ( cos `  A )  =  ( cos `  B )  <->  -.  ( cos `  A
) #  ( cos `  B
) ) )
3517recnd 7919 . . . 4  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  A  e.  CC )
3620recnd 7919 . . . 4  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  B  e.  CC )
37 apti 8512 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <->  -.  A #  B )
)
3835, 36, 37syl2anc 409 . . 3  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( A  =  B  <->  -.  A #  B
) )
3930, 34, 383imtr4d 202 . 2  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( ( cos `  A )  =  ( cos `  B )  ->  A  =  B ) )
401, 39impbid2 142 1  |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  ( 0 [,] pi ) )  ->  ( A  =  B  <->  ( cos `  A
)  =  ( cos `  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1342    e. wcel 2135   class class class wbr 3977   ` cfv 5183  (class class class)co 5837   CCcc 7743   RRcr 7744   0cc0 7745    < clt 7925    <_ cle 7926   # cap 8471   [,]cicc 9819   cosccos 11576   picpi 11578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-iinf 4560  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-mulrcl 7844  ax-addcom 7845  ax-mulcom 7846  ax-addass 7847  ax-mulass 7848  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-1rid 7852  ax-0id 7853  ax-rnegex 7854  ax-precex 7855  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861  ax-pre-mulgt0 7862  ax-pre-mulext 7863  ax-arch 7864  ax-caucvg 7865  ax-pre-suploc 7866  ax-addf 7867  ax-mulf 7868
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-if 3517  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-disj 3955  df-br 3978  df-opab 4039  df-mpt 4040  df-tr 4076  df-id 4266  df-po 4269  df-iso 4270  df-iord 4339  df-on 4341  df-ilim 4342  df-suc 4344  df-iom 4563  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-isom 5192  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-of 6045  df-1st 6101  df-2nd 6102  df-recs 6265  df-irdg 6330  df-frec 6351  df-1o 6376  df-oadd 6380  df-er 6493  df-map 6608  df-pm 6609  df-en 6699  df-dom 6700  df-fin 6701  df-sup 6941  df-inf 6942  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-reap 8465  df-ap 8472  df-div 8561  df-inn 8850  df-2 8908  df-3 8909  df-4 8910  df-5 8911  df-6 8912  df-7 8913  df-8 8914  df-9 8915  df-n0 9107  df-z 9184  df-uz 9459  df-q 9550  df-rp 9582  df-xneg 9700  df-xadd 9701  df-ioo 9820  df-ioc 9821  df-ico 9822  df-icc 9823  df-fz 9937  df-fzo 10069  df-seqfrec 10372  df-exp 10446  df-fac 10629  df-bc 10651  df-ihash 10679  df-shft 10747  df-cj 10774  df-re 10775  df-im 10776  df-rsqrt 10930  df-abs 10931  df-clim 11210  df-sumdc 11285  df-ef 11579  df-sin 11581  df-cos 11582  df-pi 11584  df-rest 12520  df-topgen 12539  df-psmet 12554  df-xmet 12555  df-met 12556  df-bl 12557  df-mopn 12558  df-top 12563  df-topon 12576  df-bases 12608  df-ntr 12663  df-cn 12755  df-cnp 12756  df-tx 12820  df-cncf 13125  df-limced 13192  df-dvap 13193
This theorem is referenced by:  ioocosf1o  13342
  Copyright terms: Public domain W3C validator