Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cos11 | Unicode version |
Description: Cosine is one-to-one over the closed interval from to . (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.) |
Ref | Expression |
---|---|
cos11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5481 | . 2 | |
2 | simpll 519 | . . . . . . . 8 | |
3 | simplr 520 | . . . . . . . 8 | |
4 | simpr 109 | . . . . . . . 8 | |
5 | 2, 3, 4 | cosordlem 13337 | . . . . . . 7 |
6 | 5 | ex 114 | . . . . . 6 |
7 | simplr 520 | . . . . . . . 8 | |
8 | simpll 519 | . . . . . . . 8 | |
9 | simpr 109 | . . . . . . . 8 | |
10 | 7, 8, 9 | cosordlem 13337 | . . . . . . 7 |
11 | 10 | ex 114 | . . . . . 6 |
12 | 6, 11 | orim12d 776 | . . . . 5 |
13 | 0re 7891 | . . . . . . . . 9 | |
14 | pire 13274 | . . . . . . . . 9 | |
15 | 13, 14 | elicc2i 9867 | . . . . . . . 8 |
16 | 15 | simp1bi 1001 | . . . . . . 7 |
17 | 16 | adantr 274 | . . . . . 6 |
18 | 13, 14 | elicc2i 9867 | . . . . . . . 8 |
19 | 18 | simp1bi 1001 | . . . . . . 7 |
20 | 19 | adantl 275 | . . . . . 6 |
21 | reaplt 8478 | . . . . . 6 # | |
22 | 17, 20, 21 | syl2anc 409 | . . . . 5 # |
23 | 17 | recoscld 11655 | . . . . . . 7 |
24 | 20 | recoscld 11655 | . . . . . . 7 |
25 | reaplt 8478 | . . . . . . 7 # | |
26 | 23, 24, 25 | syl2anc 409 | . . . . . 6 # |
27 | orcom 718 | . . . . . 6 | |
28 | 26, 27 | bitrdi 195 | . . . . 5 # |
29 | 12, 22, 28 | 3imtr4d 202 | . . . 4 # # |
30 | 29 | con3d 621 | . . 3 # # |
31 | 23 | recnd 7919 | . . . 4 |
32 | 24 | recnd 7919 | . . . 4 |
33 | apti 8512 | . . . 4 # | |
34 | 31, 32, 33 | syl2anc 409 | . . 3 # |
35 | 17 | recnd 7919 | . . . 4 |
36 | 20 | recnd 7919 | . . . 4 |
37 | apti 8512 | . . . 4 # | |
38 | 35, 36, 37 | syl2anc 409 | . . 3 # |
39 | 30, 34, 38 | 3imtr4d 202 | . 2 |
40 | 1, 39 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1342 wcel 2135 class class class wbr 3977 cfv 5183 (class class class)co 5837 cc 7743 cr 7744 cc0 7745 clt 7925 cle 7926 # cap 8471 cicc 9819 ccos 11576 cpi 11578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4092 ax-sep 4095 ax-nul 4103 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-iinf 4560 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-mulrcl 7844 ax-addcom 7845 ax-mulcom 7846 ax-addass 7847 ax-mulass 7848 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-1rid 7852 ax-0id 7853 ax-rnegex 7854 ax-precex 7855 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 ax-pre-ltadd 7861 ax-pre-mulgt0 7862 ax-pre-mulext 7863 ax-arch 7864 ax-caucvg 7865 ax-pre-suploc 7866 ax-addf 7867 ax-mulf 7868 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rmo 2450 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-if 3517 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-iun 3863 df-disj 3955 df-br 3978 df-opab 4039 df-mpt 4040 df-tr 4076 df-id 4266 df-po 4269 df-iso 4270 df-iord 4339 df-on 4341 df-ilim 4342 df-suc 4344 df-iom 4563 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-isom 5192 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-of 6045 df-1st 6101 df-2nd 6102 df-recs 6265 df-irdg 6330 df-frec 6351 df-1o 6376 df-oadd 6380 df-er 6493 df-map 6608 df-pm 6609 df-en 6699 df-dom 6700 df-fin 6701 df-sup 6941 df-inf 6942 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-reap 8465 df-ap 8472 df-div 8561 df-inn 8850 df-2 8908 df-3 8909 df-4 8910 df-5 8911 df-6 8912 df-7 8913 df-8 8914 df-9 8915 df-n0 9107 df-z 9184 df-uz 9459 df-q 9550 df-rp 9582 df-xneg 9700 df-xadd 9701 df-ioo 9820 df-ioc 9821 df-ico 9822 df-icc 9823 df-fz 9937 df-fzo 10069 df-seqfrec 10372 df-exp 10446 df-fac 10629 df-bc 10651 df-ihash 10679 df-shft 10747 df-cj 10774 df-re 10775 df-im 10776 df-rsqrt 10930 df-abs 10931 df-clim 11210 df-sumdc 11285 df-ef 11579 df-sin 11581 df-cos 11582 df-pi 11584 df-rest 12520 df-topgen 12539 df-psmet 12554 df-xmet 12555 df-met 12556 df-bl 12557 df-mopn 12558 df-top 12563 df-topon 12576 df-bases 12608 df-ntr 12663 df-cn 12755 df-cnp 12756 df-tx 12820 df-cncf 13125 df-limced 13192 df-dvap 13193 |
This theorem is referenced by: ioocosf1o 13342 |
Copyright terms: Public domain | W3C validator |