Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cos11 | Unicode version |
Description: Cosine is one-to-one over the closed interval from to . (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.) |
Ref | Expression |
---|---|
cos11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5486 | . 2 | |
2 | simpll 519 | . . . . . . . 8 | |
3 | simplr 520 | . . . . . . . 8 | |
4 | simpr 109 | . . . . . . . 8 | |
5 | 2, 3, 4 | cosordlem 13410 | . . . . . . 7 |
6 | 5 | ex 114 | . . . . . 6 |
7 | simplr 520 | . . . . . . . 8 | |
8 | simpll 519 | . . . . . . . 8 | |
9 | simpr 109 | . . . . . . . 8 | |
10 | 7, 8, 9 | cosordlem 13410 | . . . . . . 7 |
11 | 10 | ex 114 | . . . . . 6 |
12 | 6, 11 | orim12d 776 | . . . . 5 |
13 | 0re 7899 | . . . . . . . . 9 | |
14 | pire 13347 | . . . . . . . . 9 | |
15 | 13, 14 | elicc2i 9875 | . . . . . . . 8 |
16 | 15 | simp1bi 1002 | . . . . . . 7 |
17 | 16 | adantr 274 | . . . . . 6 |
18 | 13, 14 | elicc2i 9875 | . . . . . . . 8 |
19 | 18 | simp1bi 1002 | . . . . . . 7 |
20 | 19 | adantl 275 | . . . . . 6 |
21 | reaplt 8486 | . . . . . 6 # | |
22 | 17, 20, 21 | syl2anc 409 | . . . . 5 # |
23 | 17 | recoscld 11665 | . . . . . . 7 |
24 | 20 | recoscld 11665 | . . . . . . 7 |
25 | reaplt 8486 | . . . . . . 7 # | |
26 | 23, 24, 25 | syl2anc 409 | . . . . . 6 # |
27 | orcom 718 | . . . . . 6 | |
28 | 26, 27 | bitrdi 195 | . . . . 5 # |
29 | 12, 22, 28 | 3imtr4d 202 | . . . 4 # # |
30 | 29 | con3d 621 | . . 3 # # |
31 | 23 | recnd 7927 | . . . 4 |
32 | 24 | recnd 7927 | . . . 4 |
33 | apti 8520 | . . . 4 # | |
34 | 31, 32, 33 | syl2anc 409 | . . 3 # |
35 | 17 | recnd 7927 | . . . 4 |
36 | 20 | recnd 7927 | . . . 4 |
37 | apti 8520 | . . . 4 # | |
38 | 35, 36, 37 | syl2anc 409 | . . 3 # |
39 | 30, 34, 38 | 3imtr4d 202 | . 2 |
40 | 1, 39 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 class class class wbr 3982 cfv 5188 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 clt 7933 cle 7934 # cap 8479 cicc 9827 ccos 11586 cpi 11588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 ax-pre-suploc 7874 ax-addf 7875 ax-mulf 7876 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-disj 3960 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-of 6050 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-map 6616 df-pm 6617 df-en 6707 df-dom 6708 df-fin 6709 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-xneg 9708 df-xadd 9709 df-ioo 9828 df-ioc 9829 df-ico 9830 df-icc 9831 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-fac 10639 df-bc 10661 df-ihash 10689 df-shft 10757 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 df-ef 11589 df-sin 11591 df-cos 11592 df-pi 11594 df-rest 12558 df-topgen 12577 df-psmet 12627 df-xmet 12628 df-met 12629 df-bl 12630 df-mopn 12631 df-top 12636 df-topon 12649 df-bases 12681 df-ntr 12736 df-cn 12828 df-cnp 12829 df-tx 12893 df-cncf 13198 df-limced 13265 df-dvap 13266 |
This theorem is referenced by: ioocosf1o 13415 |
Copyright terms: Public domain | W3C validator |