ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfznn0 Unicode version

Theorem elfznn0 10206
Description: A member of a finite set of sequential nonnegative integers is a nonnegative integer. (Contributed by NM, 5-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfznn0  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )

Proof of Theorem elfznn0
StepHypRef Expression
1 elfz2nn0 10204 . 2  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  NN0  /\  N  e. 
NN0  /\  K  <_  N ) )
21simp1bi 1014 1  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   0cc0 7896    <_ cle 8079   NN0cn0 9266   ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by:  fz0ssnn0  10208  fz0fzdiffz0  10222  difelfzle  10226  fzo0ssnn0  10308  bcval  10858  bcrpcl  10862  bccmpl  10863  bcp1n  10870  bcp1nk  10871  permnn  10880  binomlem  11665  binom1p  11667  binom1dif  11669  bcxmas  11671  arisum  11680  arisum2  11681  pwm1geoserap1  11690  geo2sum  11696  mertenslemub  11716  mertenslemi1  11717  mertenslem2  11718  mertensabs  11719  efcvgfsum  11849  efaddlem  11856  eirraplem  11959  3dvds  12046  bitsfzolem  12136  prmdiveq  12429  hashgcdlem  12431  pcbc  12545  ennnfonelemim  12666  ctinfomlemom  12669  elply2  15055  plyf  15057  elplyd  15061  ply1termlem  15062  plyaddlem1  15067  plymullem1  15068  plyaddlem  15069  plymullem  15070  plycoeid3  15077  plycolemc  15078  plycjlemc  15080  plycj  15081  plycn  15082  plyrecj  15083  dvply1  15085  dvply2g  15086  dvdsppwf1o  15309  sgmppw  15312  1sgmprm  15314  mersenne  15317  lgseisenlem1  15395
  Copyright terms: Public domain W3C validator