ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin01gt0 Unicode version

Theorem sin01gt0 11771
Description: The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.)
Assertion
Ref Expression
sin01gt0  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( sin `  A
) )

Proof of Theorem sin01gt0
StepHypRef Expression
1 0xr 8006 . . . . . . . 8  |-  0  e.  RR*
2 1re 7958 . . . . . . . 8  |-  1  e.  RR
3 elioc2 9938 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 426 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 1012 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
6 3nn0 9196 . . . . . 6  |-  3  e.  NN0
7 reexpcl 10539 . . . . . 6  |-  ( ( A  e.  RR  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  RR )
85, 6, 7sylancl 413 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  RR )
9 3re 8995 . . . . . 6  |-  3  e.  RR
10 3ap0 9017 . . . . . 6  |-  3 #  0
11 redivclap 8690 . . . . . 6  |-  ( ( ( A ^ 3 )  e.  RR  /\  3  e.  RR  /\  3 #  0 )  ->  (
( A ^ 3 )  /  3 )  e.  RR )
129, 10, 11mp3an23 1329 . . . . 5  |-  ( ( A ^ 3 )  e.  RR  ->  (
( A ^ 3 )  /  3 )  e.  RR )
138, 12syl 14 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  e.  RR )
14 3z 9284 . . . . . . . . 9  |-  3  e.  ZZ
15 expgt0 10555 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  3  e.  ZZ  /\  0  <  A )  ->  0  <  ( A ^ 3 ) )
1614, 15mp3an2 1325 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( A ^ 3 ) )
17163adant3 1017 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  1 )  ->  0  <  ( A ^ 3 ) )
184, 17sylbi 121 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( A ^ 3 ) )
19 0lt1 8086 . . . . . . . 8  |-  0  <  1
202, 19pm3.2i 272 . . . . . . 7  |-  ( 1  e.  RR  /\  0  <  1 )
21 3pos 9015 . . . . . . . 8  |-  0  <  3
229, 21pm3.2i 272 . . . . . . 7  |-  ( 3  e.  RR  /\  0  <  3 )
23 1lt3 9092 . . . . . . . 8  |-  1  <  3
24 ltdiv2 8846 . . . . . . . 8  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( 3  e.  RR  /\  0  <  3 )  /\  (
( A ^ 3 )  e.  RR  /\  0  <  ( A ^
3 ) ) )  ->  ( 1  <  3  <->  ( ( A ^ 3 )  / 
3 )  <  (
( A ^ 3 )  /  1 ) ) )
2523, 24mpbii 148 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( 3  e.  RR  /\  0  <  3 )  /\  (
( A ^ 3 )  e.  RR  /\  0  <  ( A ^
3 ) ) )  ->  ( ( A ^ 3 )  / 
3 )  <  (
( A ^ 3 )  /  1 ) )
2620, 22, 25mp3an12 1327 . . . . . 6  |-  ( ( ( A ^ 3 )  e.  RR  /\  0  <  ( A ^
3 ) )  -> 
( ( A ^
3 )  /  3
)  <  ( ( A ^ 3 )  / 
1 ) )
278, 18, 26syl2anc 411 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  <  ( ( A ^ 3 )  / 
1 ) )
288recnd 7988 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  CC )
2928div1d 8739 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  1 )  =  ( A ^
3 ) )
3027, 29breqtrd 4031 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  <  ( A ^
3 ) )
31 1nn0 9194 . . . . . . 7  |-  1  e.  NN0
3231a1i 9 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  1  e.  NN0 )
33 1le3 9132 . . . . . . . 8  |-  1  <_  3
34 1z 9281 . . . . . . . . 9  |-  1  e.  ZZ
3534eluz1i 9537 . . . . . . . 8  |-  ( 3  e.  ( ZZ>= `  1
)  <->  ( 3  e.  ZZ  /\  1  <_ 
3 ) )
3614, 33, 35mpbir2an 942 . . . . . . 7  |-  3  e.  ( ZZ>= `  1 )
3736a1i 9 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  3  e.  ( ZZ>= `  1 )
)
384simp2bi 1013 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
39 0re 7959 . . . . . . . 8  |-  0  e.  RR
40 ltle 8047 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
4139, 5, 40sylancr 414 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
0  <  A  ->  0  <_  A ) )
4238, 41mpd 13 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <_  A )
434simp3bi 1014 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
445, 32, 37, 42, 43leexp2rd 10686 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  <_ 
( A ^ 1 ) )
455recnd 7988 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
4645exp1d 10651 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 1 )  =  A )
4744, 46breqtrd 4031 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  <_  A )
4813, 8, 5, 30, 47ltletrd 8382 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  <  A )
4913, 5posdifd 8491 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  3
)  <  A  <->  0  <  ( A  -  ( ( A ^ 3 )  /  3 ) ) ) )
5048, 49mpbid 147 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( A  -  (
( A ^ 3 )  /  3 ) ) )
51 sin01bnd 11767 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A )  /\  ( sin `  A )  < 
A ) )
5251simpld 112 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
) )
535, 13resubcld 8340 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
3 ) )  e.  RR )
545resincld 11733 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  e.  RR )
55 lttr 8033 . . 3  |-  ( ( 0  e.  RR  /\  ( A  -  (
( A ^ 3 )  /  3 ) )  e.  RR  /\  ( sin `  A )  e.  RR )  -> 
( ( 0  < 
( A  -  (
( A ^ 3 )  /  3 ) )  /\  ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
) )  ->  0  <  ( sin `  A
) ) )
5639, 53, 54, 55mp3an2i 1342 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 0  <  ( A  -  ( ( A ^ 3 )  / 
3 ) )  /\  ( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A ) )  -> 
0  <  ( sin `  A ) ) )
5750, 52, 56mp2and 433 1  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( sin `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   RRcr 7812   0cc0 7813   1c1 7814   RR*cxr 7993    < clt 7994    <_ cle 7995    - cmin 8130   # cap 8540    / cdiv 8631   3c3 8973   NN0cn0 9178   ZZcz 9255   ZZ>=cuz 9530   (,]cioc 9891   ^cexp 10521   sincsin 11654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-ioc 9895  df-ico 9896  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-fac 10708  df-ihash 10758  df-shft 10826  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364  df-ef 11658  df-sin 11660
This theorem is referenced by:  sin02gt0  11773  sincos1sgn  11774  sincos4thpi  14346
  Copyright terms: Public domain W3C validator