ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sin01gt0 Unicode version

Theorem sin01gt0 11905
Description: The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.)
Assertion
Ref Expression
sin01gt0  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( sin `  A
) )

Proof of Theorem sin01gt0
StepHypRef Expression
1 0xr 8066 . . . . . . . 8  |-  0  e.  RR*
2 1re 8018 . . . . . . . 8  |-  1  e.  RR
3 elioc2 10002 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) ) )
41, 2, 3mp2an 426 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  <->  ( A  e.  RR  /\  0  < 
A  /\  A  <_  1 ) )
54simp1bi 1014 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  RR )
6 3nn0 9258 . . . . . 6  |-  3  e.  NN0
7 reexpcl 10627 . . . . . 6  |-  ( ( A  e.  RR  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  RR )
85, 6, 7sylancl 413 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  RR )
9 3re 9056 . . . . . 6  |-  3  e.  RR
10 3ap0 9078 . . . . . 6  |-  3 #  0
11 redivclap 8750 . . . . . 6  |-  ( ( ( A ^ 3 )  e.  RR  /\  3  e.  RR  /\  3 #  0 )  ->  (
( A ^ 3 )  /  3 )  e.  RR )
129, 10, 11mp3an23 1340 . . . . 5  |-  ( ( A ^ 3 )  e.  RR  ->  (
( A ^ 3 )  /  3 )  e.  RR )
138, 12syl 14 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  e.  RR )
14 3z 9346 . . . . . . . . 9  |-  3  e.  ZZ
15 expgt0 10643 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  3  e.  ZZ  /\  0  <  A )  ->  0  <  ( A ^ 3 ) )
1614, 15mp3an2 1336 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( A ^ 3 ) )
17163adant3 1019 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <  A  /\  A  <_  1 )  ->  0  <  ( A ^ 3 ) )
184, 17sylbi 121 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( A ^ 3 ) )
19 0lt1 8146 . . . . . . . 8  |-  0  <  1
202, 19pm3.2i 272 . . . . . . 7  |-  ( 1  e.  RR  /\  0  <  1 )
21 3pos 9076 . . . . . . . 8  |-  0  <  3
229, 21pm3.2i 272 . . . . . . 7  |-  ( 3  e.  RR  /\  0  <  3 )
23 1lt3 9153 . . . . . . . 8  |-  1  <  3
24 ltdiv2 8906 . . . . . . . 8  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( 3  e.  RR  /\  0  <  3 )  /\  (
( A ^ 3 )  e.  RR  /\  0  <  ( A ^
3 ) ) )  ->  ( 1  <  3  <->  ( ( A ^ 3 )  / 
3 )  <  (
( A ^ 3 )  /  1 ) ) )
2523, 24mpbii 148 . . . . . . 7  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( 3  e.  RR  /\  0  <  3 )  /\  (
( A ^ 3 )  e.  RR  /\  0  <  ( A ^
3 ) ) )  ->  ( ( A ^ 3 )  / 
3 )  <  (
( A ^ 3 )  /  1 ) )
2620, 22, 25mp3an12 1338 . . . . . 6  |-  ( ( ( A ^ 3 )  e.  RR  /\  0  <  ( A ^
3 ) )  -> 
( ( A ^
3 )  /  3
)  <  ( ( A ^ 3 )  / 
1 ) )
278, 18, 26syl2anc 411 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  <  ( ( A ^ 3 )  / 
1 ) )
288recnd 8048 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  e.  CC )
2928div1d 8799 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  1 )  =  ( A ^
3 ) )
3027, 29breqtrd 4055 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  <  ( A ^
3 ) )
31 1nn0 9256 . . . . . . 7  |-  1  e.  NN0
3231a1i 9 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  1  e.  NN0 )
33 1le3 9193 . . . . . . . 8  |-  1  <_  3
34 1z 9343 . . . . . . . . 9  |-  1  e.  ZZ
3534eluz1i 9599 . . . . . . . 8  |-  ( 3  e.  ( ZZ>= `  1
)  <->  ( 3  e.  ZZ  /\  1  <_ 
3 ) )
3614, 33, 35mpbir2an 944 . . . . . . 7  |-  3  e.  ( ZZ>= `  1 )
3736a1i 9 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  3  e.  ( ZZ>= `  1 )
)
384simp2bi 1015 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  A )
39 0re 8019 . . . . . . . 8  |-  0  e.  RR
40 ltle 8107 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  ->  0  <_  A )
)
4139, 5, 40sylancr 414 . . . . . . 7  |-  ( A  e.  ( 0 (,] 1 )  ->  (
0  <  A  ->  0  <_  A ) )
4238, 41mpd 13 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <_  A )
434simp3bi 1016 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  A  <_  1 )
445, 32, 37, 42, 43leexp2rd 10774 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  <_ 
( A ^ 1 ) )
455recnd 8048 . . . . . 6  |-  ( A  e.  ( 0 (,] 1 )  ->  A  e.  CC )
4645exp1d 10739 . . . . 5  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 1 )  =  A )
4744, 46breqtrd 4055 . . . 4  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A ^ 3 )  <_  A )
4813, 8, 5, 30, 47ltletrd 8442 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A ^ 3 )  /  3 )  <  A )
4913, 5posdifd 8551 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( ( A ^
3 )  /  3
)  <  A  <->  0  <  ( A  -  ( ( A ^ 3 )  /  3 ) ) ) )
5048, 49mpbid 147 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( A  -  (
( A ^ 3 )  /  3 ) ) )
51 sin01bnd 11900 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A )  /\  ( sin `  A )  < 
A ) )
5251simpld 112 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
) )
535, 13resubcld 8400 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( A  -  ( ( A ^ 3 )  / 
3 ) )  e.  RR )
545resincld 11866 . . 3  |-  ( A  e.  ( 0 (,] 1 )  ->  ( sin `  A )  e.  RR )
55 lttr 8093 . . 3  |-  ( ( 0  e.  RR  /\  ( A  -  (
( A ^ 3 )  /  3 ) )  e.  RR  /\  ( sin `  A )  e.  RR )  -> 
( ( 0  < 
( A  -  (
( A ^ 3 )  /  3 ) )  /\  ( A  -  ( ( A ^ 3 )  / 
3 ) )  < 
( sin `  A
) )  ->  0  <  ( sin `  A
) ) )
5639, 53, 54, 55mp3an2i 1353 . 2  |-  ( A  e.  ( 0 (,] 1 )  ->  (
( 0  <  ( A  -  ( ( A ^ 3 )  / 
3 ) )  /\  ( A  -  (
( A ^ 3 )  /  3 ) )  <  ( sin `  A ) )  -> 
0  <  ( sin `  A ) ) )
5750, 52, 56mp2and 433 1  |-  ( A  e.  ( 0 (,] 1 )  ->  0  <  ( sin `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   RRcr 7871   0cc0 7872   1c1 7873   RR*cxr 8053    < clt 8054    <_ cle 8055    - cmin 8190   # cap 8600    / cdiv 8691   3c3 9034   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   (,]cioc 9955   ^cexp 10609   sincsin 11787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ioc 9959  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-ihash 10847  df-shft 10959  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791  df-sin 11793
This theorem is referenced by:  sin02gt0  11907  sincos1sgn  11908  sincos4thpi  14975
  Copyright terms: Public domain W3C validator