| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sin01gt0 | Unicode version | ||
| Description: The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.) |
| Ref | Expression |
|---|---|
| sin01gt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 8121 |
. . . . . . . 8
| |
| 2 | 1re 8073 |
. . . . . . . 8
| |
| 3 | elioc2 10060 |
. . . . . . . 8
| |
| 4 | 1, 2, 3 | mp2an 426 |
. . . . . . 7
|
| 5 | 4 | simp1bi 1015 |
. . . . . 6
|
| 6 | 3nn0 9315 |
. . . . . 6
| |
| 7 | reexpcl 10703 |
. . . . . 6
| |
| 8 | 5, 6, 7 | sylancl 413 |
. . . . 5
|
| 9 | 3re 9112 |
. . . . . 6
| |
| 10 | 3ap0 9134 |
. . . . . 6
| |
| 11 | redivclap 8806 |
. . . . . 6
| |
| 12 | 9, 10, 11 | mp3an23 1342 |
. . . . 5
|
| 13 | 8, 12 | syl 14 |
. . . 4
|
| 14 | 3z 9403 |
. . . . . . . . 9
| |
| 15 | expgt0 10719 |
. . . . . . . . 9
| |
| 16 | 14, 15 | mp3an2 1338 |
. . . . . . . 8
|
| 17 | 16 | 3adant3 1020 |
. . . . . . 7
|
| 18 | 4, 17 | sylbi 121 |
. . . . . 6
|
| 19 | 0lt1 8201 |
. . . . . . . 8
| |
| 20 | 2, 19 | pm3.2i 272 |
. . . . . . 7
|
| 21 | 3pos 9132 |
. . . . . . . 8
| |
| 22 | 9, 21 | pm3.2i 272 |
. . . . . . 7
|
| 23 | 1lt3 9210 |
. . . . . . . 8
| |
| 24 | ltdiv2 8962 |
. . . . . . . 8
| |
| 25 | 23, 24 | mpbii 148 |
. . . . . . 7
|
| 26 | 20, 22, 25 | mp3an12 1340 |
. . . . . 6
|
| 27 | 8, 18, 26 | syl2anc 411 |
. . . . 5
|
| 28 | 8 | recnd 8103 |
. . . . . 6
|
| 29 | 28 | div1d 8855 |
. . . . 5
|
| 30 | 27, 29 | breqtrd 4071 |
. . . 4
|
| 31 | 1nn0 9313 |
. . . . . . 7
| |
| 32 | 31 | a1i 9 |
. . . . . 6
|
| 33 | 1le3 9250 |
. . . . . . . 8
| |
| 34 | 1z 9400 |
. . . . . . . . 9
| |
| 35 | 34 | eluz1i 9657 |
. . . . . . . 8
|
| 36 | 14, 33, 35 | mpbir2an 945 |
. . . . . . 7
|
| 37 | 36 | a1i 9 |
. . . . . 6
|
| 38 | 4 | simp2bi 1016 |
. . . . . . 7
|
| 39 | 0re 8074 |
. . . . . . . 8
| |
| 40 | ltle 8162 |
. . . . . . . 8
| |
| 41 | 39, 5, 40 | sylancr 414 |
. . . . . . 7
|
| 42 | 38, 41 | mpd 13 |
. . . . . 6
|
| 43 | 4 | simp3bi 1017 |
. . . . . 6
|
| 44 | 5, 32, 37, 42, 43 | leexp2rd 10850 |
. . . . 5
|
| 45 | 5 | recnd 8103 |
. . . . . 6
|
| 46 | 45 | exp1d 10815 |
. . . . 5
|
| 47 | 44, 46 | breqtrd 4071 |
. . . 4
|
| 48 | 13, 8, 5, 30, 47 | ltletrd 8498 |
. . 3
|
| 49 | 13, 5 | posdifd 8607 |
. . 3
|
| 50 | 48, 49 | mpbid 147 |
. 2
|
| 51 | sin01bnd 12101 |
. . 3
| |
| 52 | 51 | simpld 112 |
. 2
|
| 53 | 5, 13 | resubcld 8455 |
. . 3
|
| 54 | 5 | resincld 12067 |
. . 3
|
| 55 | lttr 8148 |
. . 3
| |
| 56 | 39, 53, 54, 55 | mp3an2i 1355 |
. 2
|
| 57 | 50, 52, 56 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-frec 6479 df-1o 6504 df-oadd 6508 df-er 6622 df-en 6830 df-dom 6831 df-fin 6832 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-7 9102 df-8 9103 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-ioc 10017 df-ico 10018 df-fz 10133 df-fzo 10267 df-seqfrec 10595 df-exp 10686 df-fac 10873 df-ihash 10923 df-shft 11159 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-clim 11623 df-sumdc 11698 df-ef 11992 df-sin 11994 |
| This theorem is referenced by: sin02gt0 12108 sincos1sgn 12109 sincos4thpi 15345 |
| Copyright terms: Public domain | W3C validator |