| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sin01gt0 | Unicode version | ||
| Description: The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.) |
| Ref | Expression |
|---|---|
| sin01gt0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 8154 |
. . . . . . . 8
| |
| 2 | 1re 8106 |
. . . . . . . 8
| |
| 3 | elioc2 10093 |
. . . . . . . 8
| |
| 4 | 1, 2, 3 | mp2an 426 |
. . . . . . 7
|
| 5 | 4 | simp1bi 1015 |
. . . . . 6
|
| 6 | 3nn0 9348 |
. . . . . 6
| |
| 7 | reexpcl 10738 |
. . . . . 6
| |
| 8 | 5, 6, 7 | sylancl 413 |
. . . . 5
|
| 9 | 3re 9145 |
. . . . . 6
| |
| 10 | 3ap0 9167 |
. . . . . 6
| |
| 11 | redivclap 8839 |
. . . . . 6
| |
| 12 | 9, 10, 11 | mp3an23 1342 |
. . . . 5
|
| 13 | 8, 12 | syl 14 |
. . . 4
|
| 14 | 3z 9436 |
. . . . . . . . 9
| |
| 15 | expgt0 10754 |
. . . . . . . . 9
| |
| 16 | 14, 15 | mp3an2 1338 |
. . . . . . . 8
|
| 17 | 16 | 3adant3 1020 |
. . . . . . 7
|
| 18 | 4, 17 | sylbi 121 |
. . . . . 6
|
| 19 | 0lt1 8234 |
. . . . . . . 8
| |
| 20 | 2, 19 | pm3.2i 272 |
. . . . . . 7
|
| 21 | 3pos 9165 |
. . . . . . . 8
| |
| 22 | 9, 21 | pm3.2i 272 |
. . . . . . 7
|
| 23 | 1lt3 9243 |
. . . . . . . 8
| |
| 24 | ltdiv2 8995 |
. . . . . . . 8
| |
| 25 | 23, 24 | mpbii 148 |
. . . . . . 7
|
| 26 | 20, 22, 25 | mp3an12 1340 |
. . . . . 6
|
| 27 | 8, 18, 26 | syl2anc 411 |
. . . . 5
|
| 28 | 8 | recnd 8136 |
. . . . . 6
|
| 29 | 28 | div1d 8888 |
. . . . 5
|
| 30 | 27, 29 | breqtrd 4085 |
. . . 4
|
| 31 | 1nn0 9346 |
. . . . . . 7
| |
| 32 | 31 | a1i 9 |
. . . . . 6
|
| 33 | 1le3 9283 |
. . . . . . . 8
| |
| 34 | 1z 9433 |
. . . . . . . . 9
| |
| 35 | 34 | eluz1i 9690 |
. . . . . . . 8
|
| 36 | 14, 33, 35 | mpbir2an 945 |
. . . . . . 7
|
| 37 | 36 | a1i 9 |
. . . . . 6
|
| 38 | 4 | simp2bi 1016 |
. . . . . . 7
|
| 39 | 0re 8107 |
. . . . . . . 8
| |
| 40 | ltle 8195 |
. . . . . . . 8
| |
| 41 | 39, 5, 40 | sylancr 414 |
. . . . . . 7
|
| 42 | 38, 41 | mpd 13 |
. . . . . 6
|
| 43 | 4 | simp3bi 1017 |
. . . . . 6
|
| 44 | 5, 32, 37, 42, 43 | leexp2rd 10885 |
. . . . 5
|
| 45 | 5 | recnd 8136 |
. . . . . 6
|
| 46 | 45 | exp1d 10850 |
. . . . 5
|
| 47 | 44, 46 | breqtrd 4085 |
. . . 4
|
| 48 | 13, 8, 5, 30, 47 | ltletrd 8531 |
. . 3
|
| 49 | 13, 5 | posdifd 8640 |
. . 3
|
| 50 | 48, 49 | mpbid 147 |
. 2
|
| 51 | sin01bnd 12183 |
. . 3
| |
| 52 | 51 | simpld 112 |
. 2
|
| 53 | 5, 13 | resubcld 8488 |
. . 3
|
| 54 | 5 | resincld 12149 |
. . 3
|
| 55 | lttr 8181 |
. . 3
| |
| 56 | 39, 53, 54, 55 | mp3an2i 1355 |
. 2
|
| 57 | 50, 52, 56 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-ioc 10050 df-ico 10051 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-fac 10908 df-ihash 10958 df-shft 11241 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 df-ef 12074 df-sin 12076 |
| This theorem is referenced by: sin02gt0 12190 sincos1sgn 12191 sincos4thpi 15427 |
| Copyright terms: Public domain | W3C validator |