ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en0 Unicode version

Theorem en0 6773
Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
en0  |-  ( A 
~~  (/)  <->  A  =  (/) )

Proof of Theorem en0
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 6725 . . 3  |-  ( A 
~~  (/)  <->  E. f  f : A -1-1-onto-> (/) )
2 f1ocnv 5455 . . . . 5  |-  ( f : A -1-1-onto-> (/)  ->  `' f : (/)
-1-1-onto-> A )
3 f1o00 5477 . . . . . 6  |-  ( `' f : (/) -1-1-onto-> A  <->  ( `' f  =  (/)  /\  A  =  (/) ) )
43simprbi 273 . . . . 5  |-  ( `' f : (/) -1-1-onto-> A  ->  A  =  (/) )
52, 4syl 14 . . . 4  |-  ( f : A -1-1-onto-> (/)  ->  A  =  (/) )
65exlimiv 1591 . . 3  |-  ( E. f  f : A -1-1-onto-> (/)  ->  A  =  (/) )
71, 6sylbi 120 . 2  |-  ( A 
~~  (/)  ->  A  =  (/) )
8 0ex 4116 . . . 4  |-  (/)  e.  _V
98enref 6743 . . 3  |-  (/)  ~~  (/)
10 breq1 3992 . . 3  |-  ( A  =  (/)  ->  ( A 
~~  (/)  <->  (/)  ~~  (/) ) )
119, 10mpbiri 167 . 2  |-  ( A  =  (/)  ->  A  ~~  (/) )
127, 11impbii 125 1  |-  ( A 
~~  (/)  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348   E.wex 1485   (/)c0 3414   class class class wbr 3989   `'ccnv 4610   -1-1-onto->wf1o 5197    ~~ cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-en 6719
This theorem is referenced by:  nneneq  6835  php5  6836  snnen2oprc  6838  php5dom  6841  ssfilem  6853  dif1enen  6858  fin0  6863  fin0or  6864  diffitest  6865  findcard  6866  findcard2  6867  findcard2s  6868  diffisn  6871  fiintim  6906  fisseneq  6909  fihasheq0  10728  zfz1iso  10776
  Copyright terms: Public domain W3C validator