| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en0 | Unicode version | ||
| Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| en0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6842 |
. . 3
| |
| 2 | f1ocnv 5542 |
. . . . 5
| |
| 3 | f1o00 5564 |
. . . . . 6
| |
| 4 | 3 | simprbi 275 |
. . . . 5
|
| 5 | 2, 4 | syl 14 |
. . . 4
|
| 6 | 5 | exlimiv 1622 |
. . 3
|
| 7 | 1, 6 | sylbi 121 |
. 2
|
| 8 | 0ex 4175 |
. . . 4
| |
| 9 | 8 | enref 6863 |
. . 3
|
| 10 | breq1 4050 |
. . 3
| |
| 11 | 9, 10 | mpbiri 168 |
. 2
|
| 12 | 7, 11 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-en 6835 |
| This theorem is referenced by: nneneq 6961 php5 6962 snnen2oprc 6964 php5dom 6967 ssfilem 6979 dif1enen 6984 fin0 6989 fin0or 6990 diffitest 6991 findcard 6992 findcard2 6993 findcard2s 6994 diffisn 6997 fiintim 7035 fisseneq 7038 fihasheq0 10945 zfz1iso 10993 |
| Copyright terms: Public domain | W3C validator |