| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > en0 | Unicode version | ||
| Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) | 
| Ref | Expression | 
|---|---|
| en0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bren 6806 | 
. . 3
 | |
| 2 | f1ocnv 5517 | 
. . . . 5
 | |
| 3 | f1o00 5539 | 
. . . . . 6
 | |
| 4 | 3 | simprbi 275 | 
. . . . 5
 | 
| 5 | 2, 4 | syl 14 | 
. . . 4
 | 
| 6 | 5 | exlimiv 1612 | 
. . 3
 | 
| 7 | 1, 6 | sylbi 121 | 
. 2
 | 
| 8 | 0ex 4160 | 
. . . 4
 | |
| 9 | 8 | enref 6824 | 
. . 3
 | 
| 10 | breq1 4036 | 
. . 3
 | |
| 11 | 9, 10 | mpbiri 168 | 
. 2
 | 
| 12 | 7, 11 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-en 6800 | 
| This theorem is referenced by: nneneq 6918 php5 6919 snnen2oprc 6921 php5dom 6924 ssfilem 6936 dif1enen 6941 fin0 6946 fin0or 6947 diffitest 6948 findcard 6949 findcard2 6950 findcard2s 6951 diffisn 6954 fiintim 6992 fisseneq 6995 fihasheq0 10885 zfz1iso 10933 | 
| Copyright terms: Public domain | W3C validator |