ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en0 Unicode version

Theorem en0 6761
Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
en0  |-  ( A 
~~  (/)  <->  A  =  (/) )

Proof of Theorem en0
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 6713 . . 3  |-  ( A 
~~  (/)  <->  E. f  f : A -1-1-onto-> (/) )
2 f1ocnv 5445 . . . . 5  |-  ( f : A -1-1-onto-> (/)  ->  `' f : (/)
-1-1-onto-> A )
3 f1o00 5467 . . . . . 6  |-  ( `' f : (/) -1-1-onto-> A  <->  ( `' f  =  (/)  /\  A  =  (/) ) )
43simprbi 273 . . . . 5  |-  ( `' f : (/) -1-1-onto-> A  ->  A  =  (/) )
52, 4syl 14 . . . 4  |-  ( f : A -1-1-onto-> (/)  ->  A  =  (/) )
65exlimiv 1586 . . 3  |-  ( E. f  f : A -1-1-onto-> (/)  ->  A  =  (/) )
71, 6sylbi 120 . 2  |-  ( A 
~~  (/)  ->  A  =  (/) )
8 0ex 4109 . . . 4  |-  (/)  e.  _V
98enref 6731 . . 3  |-  (/)  ~~  (/)
10 breq1 3985 . . 3  |-  ( A  =  (/)  ->  ( A 
~~  (/)  <->  (/)  ~~  (/) ) )
119, 10mpbiri 167 . 2  |-  ( A  =  (/)  ->  A  ~~  (/) )
127, 11impbii 125 1  |-  ( A 
~~  (/)  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343   E.wex 1480   (/)c0 3409   class class class wbr 3982   `'ccnv 4603   -1-1-onto->wf1o 5187    ~~ cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-en 6707
This theorem is referenced by:  nneneq  6823  php5  6824  snnen2oprc  6826  php5dom  6829  ssfilem  6841  dif1enen  6846  fin0  6851  fin0or  6852  diffitest  6853  findcard  6854  findcard2  6855  findcard2s  6856  diffisn  6859  fiintim  6894  fisseneq  6897  fihasheq0  10707  zfz1iso  10754
  Copyright terms: Public domain W3C validator