Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > en0 | Unicode version |
Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
en0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 6725 | . . 3 | |
2 | f1ocnv 5455 | . . . . 5 | |
3 | f1o00 5477 | . . . . . 6 | |
4 | 3 | simprbi 273 | . . . . 5 |
5 | 2, 4 | syl 14 | . . . 4 |
6 | 5 | exlimiv 1591 | . . 3 |
7 | 1, 6 | sylbi 120 | . 2 |
8 | 0ex 4116 | . . . 4 | |
9 | 8 | enref 6743 | . . 3 |
10 | breq1 3992 | . . 3 | |
11 | 9, 10 | mpbiri 167 | . 2 |
12 | 7, 11 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wex 1485 c0 3414 class class class wbr 3989 ccnv 4610 wf1o 5197 cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-en 6719 |
This theorem is referenced by: nneneq 6835 php5 6836 snnen2oprc 6838 php5dom 6841 ssfilem 6853 dif1enen 6858 fin0 6863 fin0or 6864 diffitest 6865 findcard 6866 findcard2 6867 findcard2s 6868 diffisn 6871 fiintim 6906 fisseneq 6909 fihasheq0 10728 zfz1iso 10776 |
Copyright terms: Public domain | W3C validator |