ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en0 Unicode version

Theorem en0 6795
Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
en0  |-  ( A 
~~  (/)  <->  A  =  (/) )

Proof of Theorem en0
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 6747 . . 3  |-  ( A 
~~  (/)  <->  E. f  f : A -1-1-onto-> (/) )
2 f1ocnv 5475 . . . . 5  |-  ( f : A -1-1-onto-> (/)  ->  `' f : (/)
-1-1-onto-> A )
3 f1o00 5497 . . . . . 6  |-  ( `' f : (/) -1-1-onto-> A  <->  ( `' f  =  (/)  /\  A  =  (/) ) )
43simprbi 275 . . . . 5  |-  ( `' f : (/) -1-1-onto-> A  ->  A  =  (/) )
52, 4syl 14 . . . 4  |-  ( f : A -1-1-onto-> (/)  ->  A  =  (/) )
65exlimiv 1598 . . 3  |-  ( E. f  f : A -1-1-onto-> (/)  ->  A  =  (/) )
71, 6sylbi 121 . 2  |-  ( A 
~~  (/)  ->  A  =  (/) )
8 0ex 4131 . . . 4  |-  (/)  e.  _V
98enref 6765 . . 3  |-  (/)  ~~  (/)
10 breq1 4007 . . 3  |-  ( A  =  (/)  ->  ( A 
~~  (/)  <->  (/)  ~~  (/) ) )
119, 10mpbiri 168 . 2  |-  ( A  =  (/)  ->  A  ~~  (/) )
127, 11impbii 126 1  |-  ( A 
~~  (/)  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   E.wex 1492   (/)c0 3423   class class class wbr 4004   `'ccnv 4626   -1-1-onto->wf1o 5216    ~~ cen 6738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-en 6741
This theorem is referenced by:  nneneq  6857  php5  6858  snnen2oprc  6860  php5dom  6863  ssfilem  6875  dif1enen  6880  fin0  6885  fin0or  6886  diffitest  6887  findcard  6888  findcard2  6889  findcard2s  6890  diffisn  6893  fiintim  6928  fisseneq  6931  fihasheq0  10773  zfz1iso  10821
  Copyright terms: Public domain W3C validator