ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en0 Unicode version

Theorem en0 6854
Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
en0  |-  ( A 
~~  (/)  <->  A  =  (/) )

Proof of Theorem en0
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 6806 . . 3  |-  ( A 
~~  (/)  <->  E. f  f : A -1-1-onto-> (/) )
2 f1ocnv 5517 . . . . 5  |-  ( f : A -1-1-onto-> (/)  ->  `' f : (/)
-1-1-onto-> A )
3 f1o00 5539 . . . . . 6  |-  ( `' f : (/) -1-1-onto-> A  <->  ( `' f  =  (/)  /\  A  =  (/) ) )
43simprbi 275 . . . . 5  |-  ( `' f : (/) -1-1-onto-> A  ->  A  =  (/) )
52, 4syl 14 . . . 4  |-  ( f : A -1-1-onto-> (/)  ->  A  =  (/) )
65exlimiv 1612 . . 3  |-  ( E. f  f : A -1-1-onto-> (/)  ->  A  =  (/) )
71, 6sylbi 121 . 2  |-  ( A 
~~  (/)  ->  A  =  (/) )
8 0ex 4160 . . . 4  |-  (/)  e.  _V
98enref 6824 . . 3  |-  (/)  ~~  (/)
10 breq1 4036 . . 3  |-  ( A  =  (/)  ->  ( A 
~~  (/)  <->  (/)  ~~  (/) ) )
119, 10mpbiri 168 . 2  |-  ( A  =  (/)  ->  A  ~~  (/) )
127, 11impbii 126 1  |-  ( A 
~~  (/)  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   E.wex 1506   (/)c0 3450   class class class wbr 4033   `'ccnv 4662   -1-1-onto->wf1o 5257    ~~ cen 6797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-en 6800
This theorem is referenced by:  nneneq  6918  php5  6919  snnen2oprc  6921  php5dom  6924  ssfilem  6936  dif1enen  6941  fin0  6946  fin0or  6947  diffitest  6948  findcard  6949  findcard2  6950  findcard2s  6951  diffisn  6954  fiintim  6992  fisseneq  6995  fihasheq0  10885  zfz1iso  10933
  Copyright terms: Public domain W3C validator