ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en0 Unicode version

Theorem en0 6894
Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
en0  |-  ( A 
~~  (/)  <->  A  =  (/) )

Proof of Theorem en0
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 6842 . . 3  |-  ( A 
~~  (/)  <->  E. f  f : A -1-1-onto-> (/) )
2 f1ocnv 5542 . . . . 5  |-  ( f : A -1-1-onto-> (/)  ->  `' f : (/)
-1-1-onto-> A )
3 f1o00 5564 . . . . . 6  |-  ( `' f : (/) -1-1-onto-> A  <->  ( `' f  =  (/)  /\  A  =  (/) ) )
43simprbi 275 . . . . 5  |-  ( `' f : (/) -1-1-onto-> A  ->  A  =  (/) )
52, 4syl 14 . . . 4  |-  ( f : A -1-1-onto-> (/)  ->  A  =  (/) )
65exlimiv 1622 . . 3  |-  ( E. f  f : A -1-1-onto-> (/)  ->  A  =  (/) )
71, 6sylbi 121 . 2  |-  ( A 
~~  (/)  ->  A  =  (/) )
8 0ex 4175 . . . 4  |-  (/)  e.  _V
98enref 6863 . . 3  |-  (/)  ~~  (/)
10 breq1 4050 . . 3  |-  ( A  =  (/)  ->  ( A 
~~  (/)  <->  (/)  ~~  (/) ) )
119, 10mpbiri 168 . 2  |-  ( A  =  (/)  ->  A  ~~  (/) )
127, 11impbii 126 1  |-  ( A 
~~  (/)  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   E.wex 1516   (/)c0 3461   class class class wbr 4047   `'ccnv 4678   -1-1-onto->wf1o 5275    ~~ cen 6832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-en 6835
This theorem is referenced by:  nneneq  6961  php5  6962  snnen2oprc  6964  php5dom  6967  ssfilem  6979  dif1enen  6984  fin0  6989  fin0or  6990  diffitest  6991  findcard  6992  findcard2  6993  findcard2s  6994  diffisn  6997  fiintim  7035  fisseneq  7038  fihasheq0  10945  zfz1iso  10993
  Copyright terms: Public domain W3C validator