| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en0 | Unicode version | ||
| Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| en0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6885 |
. . 3
| |
| 2 | f1ocnv 5581 |
. . . . 5
| |
| 3 | f1o00 5604 |
. . . . . 6
| |
| 4 | 3 | simprbi 275 |
. . . . 5
|
| 5 | 2, 4 | syl 14 |
. . . 4
|
| 6 | 5 | exlimiv 1644 |
. . 3
|
| 7 | 1, 6 | sylbi 121 |
. 2
|
| 8 | 0ex 4210 |
. . . 4
| |
| 9 | 8 | enref 6906 |
. . 3
|
| 10 | breq1 4085 |
. . 3
| |
| 11 | 9, 10 | mpbiri 168 |
. 2
|
| 12 | 7, 11 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-en 6878 |
| This theorem is referenced by: nneneq 7006 php5 7007 snnen2oprc 7009 php5dom 7012 ssfilem 7025 dif1enen 7030 fin0 7035 fin0or 7036 diffitest 7037 findcard 7038 findcard2 7039 findcard2s 7040 diffisn 7043 fiintim 7081 fisseneq 7084 fihasheq0 11002 zfz1iso 11050 |
| Copyright terms: Public domain | W3C validator |