Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > en0 | Unicode version |
Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
en0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 6713 | . . 3 | |
2 | f1ocnv 5445 | . . . . 5 | |
3 | f1o00 5467 | . . . . . 6 | |
4 | 3 | simprbi 273 | . . . . 5 |
5 | 2, 4 | syl 14 | . . . 4 |
6 | 5 | exlimiv 1586 | . . 3 |
7 | 1, 6 | sylbi 120 | . 2 |
8 | 0ex 4109 | . . . 4 | |
9 | 8 | enref 6731 | . . 3 |
10 | breq1 3985 | . . 3 | |
11 | 9, 10 | mpbiri 167 | . 2 |
12 | 7, 11 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 wex 1480 c0 3409 class class class wbr 3982 ccnv 4603 wf1o 5187 cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-en 6707 |
This theorem is referenced by: nneneq 6823 php5 6824 snnen2oprc 6826 php5dom 6829 ssfilem 6841 dif1enen 6846 fin0 6851 fin0or 6852 diffitest 6853 findcard 6854 findcard2 6855 findcard2s 6856 diffisn 6859 fiintim 6894 fisseneq 6897 fihasheq0 10707 zfz1iso 10754 |
Copyright terms: Public domain | W3C validator |