ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suceloni Unicode version

Theorem suceloni 4478
Description: The successor of an ordinal number is an ordinal number. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
suceloni  |-  ( A  e.  On  ->  suc  A  e.  On )

Proof of Theorem suceloni
StepHypRef Expression
1 eloni 4353 . . 3  |-  ( A  e.  On  ->  Ord  A )
2 ordsucim 4477 . . 3  |-  ( Ord 
A  ->  Ord  suc  A
)
31, 2syl 14 . 2  |-  ( A  e.  On  ->  Ord  suc 
A )
4 sucexg 4475 . . 3  |-  ( A  e.  On  ->  suc  A  e.  _V )
5 elong 4351 . . 3  |-  ( suc 
A  e.  _V  ->  ( suc  A  e.  On  <->  Ord 
suc  A ) )
64, 5syl 14 . 2  |-  ( A  e.  On  ->  ( suc  A  e.  On  <->  Ord  suc  A
) )
73, 6mpbird 166 1  |-  ( A  e.  On  ->  suc  A  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2136   _Vcvv 2726   Ord word 4340   Oncon0 4341   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349
This theorem is referenced by:  sucelon  4480  unon  4488  onsuci  4493  ordsucunielexmid  4508  tfrlemisucaccv  6293  tfrexlem  6302  tfri1dALT  6319  rdgisuc1  6352  rdgon  6354  oacl  6428  oasuc  6432  omsuc  6440
  Copyright terms: Public domain W3C validator