![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suceloni | GIF version |
Description: The successor of an ordinal number is an ordinal number. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
suceloni | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4257 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordsucim 4376 | . . 3 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
4 | sucexg 4374 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
5 | elong 4255 | . . 3 ⊢ (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) |
7 | 3, 6 | mpbird 166 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 1463 Vcvv 2657 Ord word 4244 Oncon0 4245 suc csuc 4247 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-uni 3703 df-tr 3987 df-iord 4248 df-on 4250 df-suc 4253 |
This theorem is referenced by: sucelon 4379 unon 4387 onsuci 4392 ordsucunielexmid 4406 tfrlemisucaccv 6176 tfrexlem 6185 tfri1dALT 6202 rdgisuc1 6235 rdgon 6237 oacl 6310 oasuc 6314 omsuc 6322 |
Copyright terms: Public domain | W3C validator |