Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suceloni | GIF version |
Description: The successor of an ordinal number is an ordinal number. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
suceloni | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4360 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordsucim 4484 | . . 3 ⊢ (Ord 𝐴 → Ord suc 𝐴) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ On → Ord suc 𝐴) |
4 | sucexg 4482 | . . 3 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ V) | |
5 | elong 4358 | . . 3 ⊢ (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴)) |
7 | 3, 6 | mpbird 166 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2141 Vcvv 2730 Ord word 4347 Oncon0 4348 suc csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 |
This theorem is referenced by: sucelon 4487 unon 4495 onsuci 4500 ordsucunielexmid 4515 tfrlemisucaccv 6304 tfrexlem 6313 tfri1dALT 6330 rdgisuc1 6363 rdgon 6365 oacl 6439 oasuc 6443 omsuc 6451 |
Copyright terms: Public domain | W3C validator |