ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suceloni GIF version

Theorem suceloni 4494
Description: The successor of an ordinal number is an ordinal number. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
suceloni (𝐴 ∈ On → suc 𝐴 ∈ On)

Proof of Theorem suceloni
StepHypRef Expression
1 eloni 4369 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 ordsucim 4493 . . 3 (Ord 𝐴 → Ord suc 𝐴)
31, 2syl 14 . 2 (𝐴 ∈ On → Ord suc 𝐴)
4 sucexg 4491 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ V)
5 elong 4367 . . 3 (suc 𝐴 ∈ V → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
64, 5syl 14 . 2 (𝐴 ∈ On → (suc 𝐴 ∈ On ↔ Ord suc 𝐴))
73, 6mpbird 167 1 (𝐴 ∈ On → suc 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2146  Vcvv 2735  Ord word 4356  Oncon0 4357  suc csuc 4359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-uni 3806  df-tr 4097  df-iord 4360  df-on 4362  df-suc 4365
This theorem is referenced by:  sucelon  4496  unon  4504  onsuci  4509  ordsucunielexmid  4524  tfrlemisucaccv  6316  tfrexlem  6325  tfri1dALT  6342  rdgisuc1  6375  rdgon  6377  oacl  6451  oasuc  6455  omsuc  6463
  Copyright terms: Public domain W3C validator