ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq1d GIF version

Theorem supeq1d 6985
Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
supeq1d.1 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
supeq1d (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))

Proof of Theorem supeq1d
StepHypRef Expression
1 supeq1d.1 . 2 (𝜑𝐵 = 𝐶)
2 supeq1 6984 . 2 (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
31, 2syl 14 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  supcsup 6980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-uni 3810  df-sup 6982
This theorem is referenced by:  sup3exmid  8913  supminfex  9596  minmax  11237  xrminmax  11272  xrminrecl  11280  xrminadd  11282  suprzubdc  11952  gcdval  11959  gcdass  12015  pceulem  12293  pceu  12294  pcval  12295  pczpre  12296  pcdiv  12301  pcneg  12323  prdsex  12717  xmetxp  13977  xmetxpbl  13978  txmetcnp  13988  qtopbasss  13991
  Copyright terms: Public domain W3C validator