ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq1d GIF version

Theorem supeq1d 7162
Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
supeq1d.1 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
supeq1d (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))

Proof of Theorem supeq1d
StepHypRef Expression
1 supeq1d.1 . 2 (𝜑𝐵 = 𝐶)
2 supeq1 7161 . 2 (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
31, 2syl 14 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  supcsup 7157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-uni 3889  df-sup 7159
This theorem is referenced by:  sup3exmid  9112  supminfex  9800  suprzubdc  10464  minmax  11749  xrminmax  11784  xrminrecl  11792  xrminadd  11794  gcdval  12488  gcdass  12544  pceulem  12825  pceu  12826  pcval  12827  pczpre  12828  pcdiv  12833  pcneg  12856  prdsex  13310  prdsval  13314  xmetxp  15189  xmetxpbl  15190  txmetcnp  15200  qtopbasss  15203  hovera  15329  hoverb  15330  hoverlt1  15331  hovergt0  15332  ivthdich  15335
  Copyright terms: Public domain W3C validator