ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq1d GIF version

Theorem supeq1d 7142
Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
supeq1d.1 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
supeq1d (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))

Proof of Theorem supeq1d
StepHypRef Expression
1 supeq1d.1 . 2 (𝜑𝐵 = 𝐶)
2 supeq1 7141 . 2 (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
31, 2syl 14 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  supcsup 7137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-uni 3888  df-sup 7139
This theorem is referenced by:  sup3exmid  9092  supminfex  9780  suprzubdc  10443  minmax  11727  xrminmax  11762  xrminrecl  11770  xrminadd  11772  gcdval  12466  gcdass  12522  pceulem  12803  pceu  12804  pcval  12805  pczpre  12806  pcdiv  12811  pcneg  12834  prdsex  13288  prdsval  13292  xmetxp  15166  xmetxpbl  15167  txmetcnp  15177  qtopbasss  15180  hovera  15306  hoverb  15307  hoverlt1  15308  hovergt0  15309  ivthdich  15312
  Copyright terms: Public domain W3C validator