ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq1d GIF version

Theorem supeq1d 7054
Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
supeq1d.1 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
supeq1d (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))

Proof of Theorem supeq1d
StepHypRef Expression
1 supeq1d.1 . 2 (𝜑𝐵 = 𝐶)
2 supeq1 7053 . 2 (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
31, 2syl 14 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  supcsup 7049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-uni 3841  df-sup 7051
This theorem is referenced by:  sup3exmid  8986  supminfex  9673  suprzubdc  10328  minmax  11397  xrminmax  11432  xrminrecl  11440  xrminadd  11442  gcdval  12136  gcdass  12192  pceulem  12473  pceu  12474  pcval  12475  pczpre  12476  pcdiv  12481  pcneg  12504  prdsex  12950  xmetxp  14753  xmetxpbl  14754  txmetcnp  14764  qtopbasss  14767  hovera  14893  hoverb  14894  hoverlt1  14895  hovergt0  14896  ivthdich  14899
  Copyright terms: Public domain W3C validator