| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supeq1d | GIF version | ||
| Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| supeq1d | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | supeq1 7161 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 supcsup 7157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-uni 3889 df-sup 7159 |
| This theorem is referenced by: sup3exmid 9112 supminfex 9800 suprzubdc 10464 minmax 11749 xrminmax 11784 xrminrecl 11792 xrminadd 11794 gcdval 12488 gcdass 12544 pceulem 12825 pceu 12826 pcval 12827 pczpre 12828 pcdiv 12833 pcneg 12856 prdsex 13310 prdsval 13314 xmetxp 15189 xmetxpbl 15190 txmetcnp 15200 qtopbasss 15203 hovera 15329 hoverb 15330 hoverlt1 15331 hovergt0 15332 ivthdich 15335 |
| Copyright terms: Public domain | W3C validator |