![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > supeq1d | GIF version |
Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
supeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
supeq1d | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | supeq1 7045 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 supcsup 7041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-uni 3836 df-sup 7043 |
This theorem is referenced by: sup3exmid 8976 supminfex 9662 minmax 11373 xrminmax 11408 xrminrecl 11416 xrminadd 11418 suprzubdc 12089 gcdval 12096 gcdass 12152 pceulem 12432 pceu 12433 pcval 12434 pczpre 12435 pcdiv 12440 pcneg 12463 prdsex 12880 xmetxp 14675 xmetxpbl 14676 txmetcnp 14686 qtopbasss 14689 hovera 14801 hoverb 14802 hoverlt1 14803 hovergt0 14804 ivthdich 14807 |
Copyright terms: Public domain | W3C validator |