| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supeq1d | GIF version | ||
| Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| supeq1d | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1d.1 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | supeq1 7053 | . 2 ⊢ (𝐵 = 𝐶 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = sup(𝐶, 𝐴, 𝑅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 supcsup 7049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-uni 3841 df-sup 7051 |
| This theorem is referenced by: sup3exmid 8986 supminfex 9673 suprzubdc 10328 minmax 11397 xrminmax 11432 xrminrecl 11440 xrminadd 11442 gcdval 12136 gcdass 12192 pceulem 12473 pceu 12474 pcval 12475 pczpre 12476 pcdiv 12481 pcneg 12504 prdsex 12950 xmetxp 14753 xmetxpbl 14754 txmetcnp 14764 qtopbasss 14767 hovera 14893 hoverb 14894 hoverlt1 14895 hovergt0 14896 ivthdich 14899 |
| Copyright terms: Public domain | W3C validator |