ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdval Unicode version

Theorem gcdval 11892
Description: The value of the  gcd operator.  ( M  gcd  N ) is the greatest common divisor of  M and  N. If  M and  N are both  0, the result is defined conventionally as  0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
gcdval  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  =  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) ) )
Distinct variable groups:    n, M    n, N

Proof of Theorem gcdval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( M  =  0  /\  N  =  0 ) )
21iftrued 3527 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) } ,  RR ,  <  ) )  =  0 )
3 0nn0 9129 . . . 4  |-  0  e.  NN0
42, 3eqeltrdi 2257 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) } ,  RR ,  <  ) )  e.  NN0 )
5 simpr 109 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  -.  ( M  =  0  /\  N  =  0 ) )
65iffalsed 3530 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  ) )  =  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) )
7 gcdsupcl 11891 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  )  e.  NN )
86, 7eqeltrd 2243 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  ) )  e.  NN )
98nnnn0d 9167 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  ) )  e. 
NN0 )
10 gcdmndc 11877 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  /\  N  =  0 ) )
11 exmiddc 826 . . . 4  |-  (DECID  ( M  =  0  /\  N  =  0 )  -> 
( ( M  =  0  /\  N  =  0 )  \/  -.  ( M  =  0  /\  N  =  0
) ) )
1210, 11syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  /\  N  =  0 )  \/  -.  ( M  =  0  /\  N  =  0
) ) )
134, 9, 12mpjaodan 788 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  ) )  e. 
NN0 )
14 eqeq1 2172 . . . . 5  |-  ( x  =  M  ->  (
x  =  0  <->  M  =  0 ) )
1514anbi1d 461 . . . 4  |-  ( x  =  M  ->  (
( x  =  0  /\  y  =  0 )  <->  ( M  =  0  /\  y  =  0 ) ) )
16 breq2 3986 . . . . . . 7  |-  ( x  =  M  ->  (
n  ||  x  <->  n  ||  M
) )
1716anbi1d 461 . . . . . 6  |-  ( x  =  M  ->  (
( n  ||  x  /\  n  ||  y )  <-> 
( n  ||  M  /\  n  ||  y ) ) )
1817rabbidv 2715 . . . . 5  |-  ( x  =  M  ->  { n  e.  ZZ  |  ( n 
||  x  /\  n  ||  y ) }  =  { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  y
) } )
1918supeq1d 6952 . . . 4  |-  ( x  =  M  ->  sup ( { n  e.  ZZ  |  ( n  ||  x  /\  n  ||  y
) } ,  RR ,  <  )  =  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  y
) } ,  RR ,  <  ) )
2015, 19ifbieq2d 3544 . . 3  |-  ( x  =  M  ->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  | 
( n  ||  x  /\  n  ||  y ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  | 
( n  ||  M  /\  n  ||  y ) } ,  RR ,  <  ) ) )
21 eqeq1 2172 . . . . 5  |-  ( y  =  N  ->  (
y  =  0  <->  N  =  0 ) )
2221anbi2d 460 . . . 4  |-  ( y  =  N  ->  (
( M  =  0  /\  y  =  0 )  <->  ( M  =  0  /\  N  =  0 ) ) )
23 breq2 3986 . . . . . . 7  |-  ( y  =  N  ->  (
n  ||  y  <->  n  ||  N
) )
2423anbi2d 460 . . . . . 6  |-  ( y  =  N  ->  (
( n  ||  M  /\  n  ||  y )  <-> 
( n  ||  M  /\  n  ||  N ) ) )
2524rabbidv 2715 . . . . 5  |-  ( y  =  N  ->  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  y ) }  =  { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } )
2625supeq1d 6952 . . . 4  |-  ( y  =  N  ->  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  y
) } ,  RR ,  <  )  =  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  ) )
2722, 26ifbieq2d 3544 . . 3  |-  ( y  =  N  ->  if ( ( M  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  | 
( n  ||  M  /\  n  ||  y ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) } ,  RR ,  <  ) ) )
28 df-gcd 11876 . . 3  |-  gcd  =  ( x  e.  ZZ ,  y  e.  ZZ  |->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  | 
( n  ||  x  /\  n  ||  y ) } ,  RR ,  <  ) ) )
2920, 27, 28ovmpog 5976 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) } ,  RR ,  <  ) )  e.  NN0 )  ->  ( M  gcd  N )  =  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) ) )
3013, 29mpd3an3 1328 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  =  if ( ( M  =  0  /\  N  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136   {crab 2448   ifcif 3520   class class class wbr 3982  (class class class)co 5842   supcsup 6947   RRcr 7752   0cc0 7753    < clt 7933   NNcn 8857   NN0cn0 9114   ZZcz 9191    || cdvds 11727    gcd cgcd 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876
This theorem is referenced by:  gcd0val  11893  gcdn0val  11894  gcdf  11905  gcdcom  11906  dfgcd2  11947  gcdass  11948
  Copyright terms: Public domain W3C validator