ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxleast Unicode version

Theorem maxleast 11732
Description: The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.)
Assertion
Ref Expression
maxleast  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  C  /\  B  <_  C ) )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C )

Proof of Theorem maxleast
Dummy variables  f  g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioran 757 . . . 4  |-  ( -.  ( C  <  A  \/  C  <  B )  <-> 
( -.  C  < 
A  /\  -.  C  <  B ) )
2 simp3 1023 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
3 lttri3 8234 . . . . . . . . 9  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
43adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( f  e.  RR  /\  g  e.  RR ) )  ->  ( f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
5 maxabslemval 11727 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) )
6 3anass 1006 . . . . . . . . . . 11  |-  ( ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) )  <->  ( (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
75, 6sylib 122 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
8 breq1 4086 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( x  <  y  <->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y )
)
98notbid 671 . . . . . . . . . . . . 13  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( -.  x  <  y  <->  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y ) )
109ralbidv 2530 . . . . . . . . . . . 12  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( A. y  e.  { A ,  B }  -.  x  <  y  <->  A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y )
)
11 breq2 4087 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( y  <  x  <->  y  <  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) ) )
1211imbi1d 231 . . . . . . . . . . . . 13  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z )  <->  ( y  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  E. z  e.  { A ,  B } y  <  z
) ) )
1312ralbidv 2530 . . . . . . . . . . . 12  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z )  <->  A. y  e.  RR  ( y  < 
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  E. z  e.  { A ,  B } y  <  z
) ) )
1410, 13anbi12d 473 . . . . . . . . . . 11  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { A ,  B } y  <  z
) )  <->  ( A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
1514rspcev 2907 . . . . . . . . . 10  |-  ( ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z ) ) )
167, 15syl 14 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z ) ) )
17163adant3 1041 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  { A ,  B }
y  <  z )
) )
184, 17suplubti 7175 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  e.  RR  /\  C  <  sup ( { A ,  B } ,  RR ,  <  )
)  ->  E. z  e.  { A ,  B } C  <  z ) )
192, 18mpand 429 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  sup ( { A ,  B } ,  RR ,  <  )  ->  E. z  e.  { A ,  B } C  <  z ) )
20 elpri 3689 . . . . . . . . 9  |-  ( z  e.  { A ,  B }  ->  ( z  =  A  \/  z  =  B ) )
2120adantr 276 . . . . . . . 8  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  A  \/  z  =  B )
)
22 breq2 4087 . . . . . . . . . . 11  |-  ( z  =  A  ->  ( C  <  z  <->  C  <  A ) )
2322biimpcd 159 . . . . . . . . . 10  |-  ( C  <  z  ->  (
z  =  A  ->  C  <  A ) )
2423adantl 277 . . . . . . . . 9  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  A  ->  C  <  A ) )
25 breq2 4087 . . . . . . . . . . 11  |-  ( z  =  B  ->  ( C  <  z  <->  C  <  B ) )
2625biimpcd 159 . . . . . . . . . 10  |-  ( C  <  z  ->  (
z  =  B  ->  C  <  B ) )
2726adantl 277 . . . . . . . . 9  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  B  ->  C  <  B ) )
2824, 27orim12d 791 . . . . . . . 8  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
( z  =  A  \/  z  =  B )  ->  ( C  <  A  \/  C  < 
B ) ) )
2921, 28mpd 13 . . . . . . 7  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  ( C  <  A  \/  C  <  B ) )
3029rexlimiva 2643 . . . . . 6  |-  ( E. z  e.  { A ,  B } C  < 
z  ->  ( C  <  A  \/  C  < 
B ) )
3119, 30syl6 33 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  sup ( { A ,  B } ,  RR ,  <  )  ->  ( C  <  A  \/  C  <  B ) ) )
3231con3d 634 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -.  ( C  <  A  \/  C  <  B )  ->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
331, 32biimtrrid 153 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( -.  C  < 
A  /\  -.  C  <  B )  ->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
34 simp1 1021 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
3534, 2lenltd 8272 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
36 simp2 1022 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
3736, 2lenltd 8272 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
3835, 37anbi12d 473 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  C  /\  B  <_  C )  <-> 
( -.  C  < 
A  /\  -.  C  <  B ) ) )
394, 17supclti 7173 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
4039, 2lenltd 8272 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <_  C  <->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
4133, 38, 403imtr4d 203 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  C  /\  B  <_  C )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C
) )
4241imp 124 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  C  /\  B  <_  C ) )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {cpr 3667   class class class wbr 4083   ` cfv 5318  (class class class)co 6007   supcsup 7157   RRcr 8006    + caddc 8010    < clt 8189    <_ cle 8190    - cmin 8325    / cdiv 8827   2c2 9169   abscabs 11516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-rp 9858  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518
This theorem is referenced by:  maxleastb  11733  dfabsmax  11736
  Copyright terms: Public domain W3C validator