ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxleast Unicode version

Theorem maxleast 11193
Description: The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.)
Assertion
Ref Expression
maxleast  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  C  /\  B  <_  C ) )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C )

Proof of Theorem maxleast
Dummy variables  f  g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioran 752 . . . 4  |-  ( -.  ( C  <  A  \/  C  <  B )  <-> 
( -.  C  < 
A  /\  -.  C  <  B ) )
2 simp3 999 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
3 lttri3 8014 . . . . . . . . 9  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
43adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( f  e.  RR  /\  g  e.  RR ) )  ->  ( f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
5 maxabslemval 11188 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) )
6 3anass 982 . . . . . . . . . . 11  |-  ( ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) )  <->  ( (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
75, 6sylib 122 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
8 breq1 4003 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( x  <  y  <->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y )
)
98notbid 667 . . . . . . . . . . . . 13  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( -.  x  <  y  <->  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y ) )
109ralbidv 2477 . . . . . . . . . . . 12  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( A. y  e.  { A ,  B }  -.  x  <  y  <->  A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y )
)
11 breq2 4004 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( y  <  x  <->  y  <  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) ) )
1211imbi1d 231 . . . . . . . . . . . . 13  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z )  <->  ( y  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  E. z  e.  { A ,  B } y  <  z
) ) )
1312ralbidv 2477 . . . . . . . . . . . 12  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z )  <->  A. y  e.  RR  ( y  < 
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  E. z  e.  { A ,  B } y  <  z
) ) )
1410, 13anbi12d 473 . . . . . . . . . . 11  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { A ,  B } y  <  z
) )  <->  ( A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
1514rspcev 2841 . . . . . . . . . 10  |-  ( ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z ) ) )
167, 15syl 14 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z ) ) )
17163adant3 1017 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  { A ,  B }
y  <  z )
) )
184, 17suplubti 6992 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  e.  RR  /\  C  <  sup ( { A ,  B } ,  RR ,  <  )
)  ->  E. z  e.  { A ,  B } C  <  z ) )
192, 18mpand 429 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  sup ( { A ,  B } ,  RR ,  <  )  ->  E. z  e.  { A ,  B } C  <  z ) )
20 elpri 3614 . . . . . . . . 9  |-  ( z  e.  { A ,  B }  ->  ( z  =  A  \/  z  =  B ) )
2120adantr 276 . . . . . . . 8  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  A  \/  z  =  B )
)
22 breq2 4004 . . . . . . . . . . 11  |-  ( z  =  A  ->  ( C  <  z  <->  C  <  A ) )
2322biimpcd 159 . . . . . . . . . 10  |-  ( C  <  z  ->  (
z  =  A  ->  C  <  A ) )
2423adantl 277 . . . . . . . . 9  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  A  ->  C  <  A ) )
25 breq2 4004 . . . . . . . . . . 11  |-  ( z  =  B  ->  ( C  <  z  <->  C  <  B ) )
2625biimpcd 159 . . . . . . . . . 10  |-  ( C  <  z  ->  (
z  =  B  ->  C  <  B ) )
2726adantl 277 . . . . . . . . 9  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  B  ->  C  <  B ) )
2824, 27orim12d 786 . . . . . . . 8  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
( z  =  A  \/  z  =  B )  ->  ( C  <  A  \/  C  < 
B ) ) )
2921, 28mpd 13 . . . . . . 7  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  ( C  <  A  \/  C  <  B ) )
3029rexlimiva 2589 . . . . . 6  |-  ( E. z  e.  { A ,  B } C  < 
z  ->  ( C  <  A  \/  C  < 
B ) )
3119, 30syl6 33 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  sup ( { A ,  B } ,  RR ,  <  )  ->  ( C  <  A  \/  C  <  B ) ) )
3231con3d 631 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -.  ( C  <  A  \/  C  <  B )  ->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
331, 32biimtrrid 153 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( -.  C  < 
A  /\  -.  C  <  B )  ->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
34 simp1 997 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
3534, 2lenltd 8052 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
36 simp2 998 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
3736, 2lenltd 8052 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
3835, 37anbi12d 473 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  C  /\  B  <_  C )  <-> 
( -.  C  < 
A  /\  -.  C  <  B ) ) )
394, 17supclti 6990 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
4039, 2lenltd 8052 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <_  C  <->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
4133, 38, 403imtr4d 203 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  C  /\  B  <_  C )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C
) )
4241imp 124 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  C  /\  B  <_  C ) )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   {cpr 3592   class class class wbr 4000   ` cfv 5211  (class class class)co 5868   supcsup 6974   RRcr 7788    + caddc 7792    < clt 7969    <_ cle 7970    - cmin 8105    / cdiv 8605   2c2 8946   abscabs 10977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-iinf 4583  ax-cnex 7880  ax-resscn 7881  ax-1cn 7882  ax-1re 7883  ax-icn 7884  ax-addcl 7885  ax-addrcl 7886  ax-mulcl 7887  ax-mulrcl 7888  ax-addcom 7889  ax-mulcom 7890  ax-addass 7891  ax-mulass 7892  ax-distr 7893  ax-i2m1 7894  ax-0lt1 7895  ax-1rid 7896  ax-0id 7897  ax-rnegex 7898  ax-precex 7899  ax-cnre 7900  ax-pre-ltirr 7901  ax-pre-ltwlin 7902  ax-pre-lttrn 7903  ax-pre-apti 7904  ax-pre-ltadd 7905  ax-pre-mulgt0 7906  ax-pre-mulext 7907  ax-arch 7908  ax-caucvg 7909
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4289  df-po 4292  df-iso 4293  df-iord 4362  df-on 4364  df-ilim 4365  df-suc 4367  df-iom 4586  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-res 4634  df-ima 4635  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-f1 5216  df-fo 5217  df-f1o 5218  df-fv 5219  df-riota 5824  df-ov 5871  df-oprab 5872  df-mpo 5873  df-1st 6134  df-2nd 6135  df-recs 6299  df-frec 6385  df-sup 6976  df-pnf 7971  df-mnf 7972  df-xr 7973  df-ltxr 7974  df-le 7975  df-sub 8107  df-neg 8108  df-reap 8509  df-ap 8516  df-div 8606  df-inn 8896  df-2 8954  df-3 8955  df-4 8956  df-n0 9153  df-z 9230  df-uz 9505  df-rp 9628  df-seqfrec 10419  df-exp 10493  df-cj 10822  df-re 10823  df-im 10824  df-rsqrt 10978  df-abs 10979
This theorem is referenced by:  maxleastb  11194  dfabsmax  11197
  Copyright terms: Public domain W3C validator