| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > maxleast | Unicode version | ||
| Description: The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.) |
| Ref | Expression |
|---|---|
| maxleast |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 757 |
. . . 4
| |
| 2 | simp3 1023 |
. . . . . . 7
| |
| 3 | lttri3 8234 |
. . . . . . . . 9
| |
| 4 | 3 | adantl 277 |
. . . . . . . 8
|
| 5 | maxabslemval 11727 |
. . . . . . . . . . 11
| |
| 6 | 3anass 1006 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | sylib 122 |
. . . . . . . . . 10
|
| 8 | breq1 4086 |
. . . . . . . . . . . . . 14
| |
| 9 | 8 | notbid 671 |
. . . . . . . . . . . . 13
|
| 10 | 9 | ralbidv 2530 |
. . . . . . . . . . . 12
|
| 11 | breq2 4087 |
. . . . . . . . . . . . . 14
| |
| 12 | 11 | imbi1d 231 |
. . . . . . . . . . . . 13
|
| 13 | 12 | ralbidv 2530 |
. . . . . . . . . . . 12
|
| 14 | 10, 13 | anbi12d 473 |
. . . . . . . . . . 11
|
| 15 | 14 | rspcev 2907 |
. . . . . . . . . 10
|
| 16 | 7, 15 | syl 14 |
. . . . . . . . 9
|
| 17 | 16 | 3adant3 1041 |
. . . . . . . 8
|
| 18 | 4, 17 | suplubti 7175 |
. . . . . . 7
|
| 19 | 2, 18 | mpand 429 |
. . . . . 6
|
| 20 | elpri 3689 |
. . . . . . . . 9
| |
| 21 | 20 | adantr 276 |
. . . . . . . 8
|
| 22 | breq2 4087 |
. . . . . . . . . . 11
| |
| 23 | 22 | biimpcd 159 |
. . . . . . . . . 10
|
| 24 | 23 | adantl 277 |
. . . . . . . . 9
|
| 25 | breq2 4087 |
. . . . . . . . . . 11
| |
| 26 | 25 | biimpcd 159 |
. . . . . . . . . 10
|
| 27 | 26 | adantl 277 |
. . . . . . . . 9
|
| 28 | 24, 27 | orim12d 791 |
. . . . . . . 8
|
| 29 | 21, 28 | mpd 13 |
. . . . . . 7
|
| 30 | 29 | rexlimiva 2643 |
. . . . . 6
|
| 31 | 19, 30 | syl6 33 |
. . . . 5
|
| 32 | 31 | con3d 634 |
. . . 4
|
| 33 | 1, 32 | biimtrrid 153 |
. . 3
|
| 34 | simp1 1021 |
. . . . 5
| |
| 35 | 34, 2 | lenltd 8272 |
. . . 4
|
| 36 | simp2 1022 |
. . . . 5
| |
| 37 | 36, 2 | lenltd 8272 |
. . . 4
|
| 38 | 35, 37 | anbi12d 473 |
. . 3
|
| 39 | 4, 17 | supclti 7173 |
. . . 4
|
| 40 | 39, 2 | lenltd 8272 |
. . 3
|
| 41 | 33, 38, 40 | 3imtr4d 203 |
. 2
|
| 42 | 41 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-sup 7159 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-rp 9858 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 |
| This theorem is referenced by: maxleastb 11733 dfabsmax 11736 |
| Copyright terms: Public domain | W3C validator |