ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxleast Unicode version

Theorem maxleast 11177
Description: The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.)
Assertion
Ref Expression
maxleast  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  C  /\  B  <_  C ) )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C )

Proof of Theorem maxleast
Dummy variables  f  g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioran 747 . . . 4  |-  ( -.  ( C  <  A  \/  C  <  B )  <-> 
( -.  C  < 
A  /\  -.  C  <  B ) )
2 simp3 994 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
3 lttri3 7999 . . . . . . . . 9  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
43adantl 275 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( f  e.  RR  /\  g  e.  RR ) )  ->  ( f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
5 maxabslemval 11172 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) )
6 3anass 977 . . . . . . . . . . 11  |-  ( ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) )  <->  ( (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
75, 6sylib 121 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
8 breq1 3992 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( x  <  y  <->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y )
)
98notbid 662 . . . . . . . . . . . . 13  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( -.  x  <  y  <->  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y ) )
109ralbidv 2470 . . . . . . . . . . . 12  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( A. y  e.  { A ,  B }  -.  x  <  y  <->  A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y )
)
11 breq2 3993 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( y  <  x  <->  y  <  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) ) )
1211imbi1d 230 . . . . . . . . . . . . 13  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z )  <->  ( y  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  E. z  e.  { A ,  B } y  <  z
) ) )
1312ralbidv 2470 . . . . . . . . . . . 12  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z )  <->  A. y  e.  RR  ( y  < 
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  E. z  e.  { A ,  B } y  <  z
) ) )
1410, 13anbi12d 470 . . . . . . . . . . 11  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { A ,  B } y  <  z
) )  <->  ( A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
1514rspcev 2834 . . . . . . . . . 10  |-  ( ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z ) ) )
167, 15syl 14 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z ) ) )
17163adant3 1012 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  { A ,  B }
y  <  z )
) )
184, 17suplubti 6977 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  e.  RR  /\  C  <  sup ( { A ,  B } ,  RR ,  <  )
)  ->  E. z  e.  { A ,  B } C  <  z ) )
192, 18mpand 427 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  sup ( { A ,  B } ,  RR ,  <  )  ->  E. z  e.  { A ,  B } C  <  z ) )
20 elpri 3606 . . . . . . . . 9  |-  ( z  e.  { A ,  B }  ->  ( z  =  A  \/  z  =  B ) )
2120adantr 274 . . . . . . . 8  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  A  \/  z  =  B )
)
22 breq2 3993 . . . . . . . . . . 11  |-  ( z  =  A  ->  ( C  <  z  <->  C  <  A ) )
2322biimpcd 158 . . . . . . . . . 10  |-  ( C  <  z  ->  (
z  =  A  ->  C  <  A ) )
2423adantl 275 . . . . . . . . 9  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  A  ->  C  <  A ) )
25 breq2 3993 . . . . . . . . . . 11  |-  ( z  =  B  ->  ( C  <  z  <->  C  <  B ) )
2625biimpcd 158 . . . . . . . . . 10  |-  ( C  <  z  ->  (
z  =  B  ->  C  <  B ) )
2726adantl 275 . . . . . . . . 9  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  B  ->  C  <  B ) )
2824, 27orim12d 781 . . . . . . . 8  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
( z  =  A  \/  z  =  B )  ->  ( C  <  A  \/  C  < 
B ) ) )
2921, 28mpd 13 . . . . . . 7  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  ( C  <  A  \/  C  <  B ) )
3029rexlimiva 2582 . . . . . 6  |-  ( E. z  e.  { A ,  B } C  < 
z  ->  ( C  <  A  \/  C  < 
B ) )
3119, 30syl6 33 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  sup ( { A ,  B } ,  RR ,  <  )  ->  ( C  <  A  \/  C  <  B ) ) )
3231con3d 626 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -.  ( C  <  A  \/  C  <  B )  ->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
331, 32syl5bir 152 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( -.  C  < 
A  /\  -.  C  <  B )  ->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
34 simp1 992 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
3534, 2lenltd 8037 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
36 simp2 993 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
3736, 2lenltd 8037 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
3835, 37anbi12d 470 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  C  /\  B  <_  C )  <-> 
( -.  C  < 
A  /\  -.  C  <  B ) ) )
394, 17supclti 6975 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
4039, 2lenltd 8037 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <_  C  <->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
4133, 38, 403imtr4d 202 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  C  /\  B  <_  C )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C
) )
4241imp 123 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  C  /\  B  <_  C ) )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   {cpr 3584   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   supcsup 6959   RRcr 7773    + caddc 7777    < clt 7954    <_ cle 7955    - cmin 8090    / cdiv 8589   2c2 8929   abscabs 10961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  maxleastb  11178  dfabsmax  11181
  Copyright terms: Public domain W3C validator