ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxleast Unicode version

Theorem maxleast 11690
Description: The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.)
Assertion
Ref Expression
maxleast  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  C  /\  B  <_  C ) )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C )

Proof of Theorem maxleast
Dummy variables  f  g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioran 756 . . . 4  |-  ( -.  ( C  <  A  \/  C  <  B )  <-> 
( -.  C  < 
A  /\  -.  C  <  B ) )
2 simp3 1004 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
3 lttri3 8194 . . . . . . . . 9  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
43adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( f  e.  RR  /\  g  e.  RR ) )  ->  ( f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
5 maxabslemval 11685 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) )
6 3anass 987 . . . . . . . . . . 11  |-  ( ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) )  <->  ( (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
75, 6sylib 122 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
8 breq1 4065 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( x  <  y  <->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y )
)
98notbid 671 . . . . . . . . . . . . 13  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( -.  x  <  y  <->  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y ) )
109ralbidv 2510 . . . . . . . . . . . 12  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( A. y  e.  { A ,  B }  -.  x  <  y  <->  A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y )
)
11 breq2 4066 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( y  <  x  <->  y  <  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) ) )
1211imbi1d 231 . . . . . . . . . . . . 13  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z )  <->  ( y  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  E. z  e.  { A ,  B } y  <  z
) ) )
1312ralbidv 2510 . . . . . . . . . . . 12  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z )  <->  A. y  e.  RR  ( y  < 
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  E. z  e.  { A ,  B } y  <  z
) ) )
1410, 13anbi12d 473 . . . . . . . . . . 11  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { A ,  B } y  <  z
) )  <->  ( A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
1514rspcev 2887 . . . . . . . . . 10  |-  ( ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z ) ) )
167, 15syl 14 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z ) ) )
17163adant3 1022 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  { A ,  B }
y  <  z )
) )
184, 17suplubti 7135 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  e.  RR  /\  C  <  sup ( { A ,  B } ,  RR ,  <  )
)  ->  E. z  e.  { A ,  B } C  <  z ) )
192, 18mpand 429 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  sup ( { A ,  B } ,  RR ,  <  )  ->  E. z  e.  { A ,  B } C  <  z ) )
20 elpri 3669 . . . . . . . . 9  |-  ( z  e.  { A ,  B }  ->  ( z  =  A  \/  z  =  B ) )
2120adantr 276 . . . . . . . 8  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  A  \/  z  =  B )
)
22 breq2 4066 . . . . . . . . . . 11  |-  ( z  =  A  ->  ( C  <  z  <->  C  <  A ) )
2322biimpcd 159 . . . . . . . . . 10  |-  ( C  <  z  ->  (
z  =  A  ->  C  <  A ) )
2423adantl 277 . . . . . . . . 9  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  A  ->  C  <  A ) )
25 breq2 4066 . . . . . . . . . . 11  |-  ( z  =  B  ->  ( C  <  z  <->  C  <  B ) )
2625biimpcd 159 . . . . . . . . . 10  |-  ( C  <  z  ->  (
z  =  B  ->  C  <  B ) )
2726adantl 277 . . . . . . . . 9  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  B  ->  C  <  B ) )
2824, 27orim12d 790 . . . . . . . 8  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
( z  =  A  \/  z  =  B )  ->  ( C  <  A  \/  C  < 
B ) ) )
2921, 28mpd 13 . . . . . . 7  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  ( C  <  A  \/  C  <  B ) )
3029rexlimiva 2623 . . . . . 6  |-  ( E. z  e.  { A ,  B } C  < 
z  ->  ( C  <  A  \/  C  < 
B ) )
3119, 30syl6 33 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  sup ( { A ,  B } ,  RR ,  <  )  ->  ( C  <  A  \/  C  <  B ) ) )
3231con3d 634 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -.  ( C  <  A  \/  C  <  B )  ->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
331, 32biimtrrid 153 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( -.  C  < 
A  /\  -.  C  <  B )  ->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
34 simp1 1002 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
3534, 2lenltd 8232 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
36 simp2 1003 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
3736, 2lenltd 8232 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
3835, 37anbi12d 473 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  C  /\  B  <_  C )  <-> 
( -.  C  < 
A  /\  -.  C  <  B ) ) )
394, 17supclti 7133 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
4039, 2lenltd 8232 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <_  C  <->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
4133, 38, 403imtr4d 203 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  C  /\  B  <_  C )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C
) )
4241imp 124 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  C  /\  B  <_  C ) )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 712    /\ w3a 983    = wceq 1375    e. wcel 2180   A.wral 2488   E.wrex 2489   {cpr 3647   class class class wbr 4062   ` cfv 5294  (class class class)co 5974   supcsup 7117   RRcr 7966    + caddc 7970    < clt 8149    <_ cle 8150    - cmin 8285    / cdiv 8787   2c2 9129   abscabs 11474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-rp 9818  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476
This theorem is referenced by:  maxleastb  11691  dfabsmax  11694
  Copyright terms: Public domain W3C validator