ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxleast Unicode version

Theorem maxleast 11378
Description: The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.)
Assertion
Ref Expression
maxleast  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  C  /\  B  <_  C ) )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C )

Proof of Theorem maxleast
Dummy variables  f  g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioran 753 . . . 4  |-  ( -.  ( C  <  A  \/  C  <  B )  <-> 
( -.  C  < 
A  /\  -.  C  <  B ) )
2 simp3 1001 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
3 lttri3 8106 . . . . . . . . 9  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
43adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( f  e.  RR  /\  g  e.  RR ) )  ->  ( f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
5 maxabslemval 11373 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) )
6 3anass 984 . . . . . . . . . . 11  |-  ( ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) )  <->  ( (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
75, 6sylib 122 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
8 breq1 4036 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( x  <  y  <->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y )
)
98notbid 668 . . . . . . . . . . . . 13  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( -.  x  <  y  <->  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y ) )
109ralbidv 2497 . . . . . . . . . . . 12  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( A. y  e.  { A ,  B }  -.  x  <  y  <->  A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y )
)
11 breq2 4037 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( y  <  x  <->  y  <  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) ) )
1211imbi1d 231 . . . . . . . . . . . . 13  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z )  <->  ( y  <  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  E. z  e.  { A ,  B } y  <  z
) ) )
1312ralbidv 2497 . . . . . . . . . . . 12  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z )  <->  A. y  e.  RR  ( y  < 
( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  E. z  e.  { A ,  B } y  <  z
) ) )
1410, 13anbi12d 473 . . . . . . . . . . 11  |-  ( x  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  ->  ( ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { A ,  B } y  <  z
) )  <->  ( A. y  e.  { A ,  B }  -.  (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) ) )
1514rspcev 2868 . . . . . . . . . 10  |-  ( ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  e.  RR  /\  ( A. y  e.  { A ,  B }  -.  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  <  y  /\  A. y  e.  RR  (
y  <  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  ->  E. z  e.  { A ,  B } y  <  z
) ) )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z ) ) )
167, 15syl 14 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { A ,  B } y  < 
z ) ) )
17163adant3 1019 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  E. x  e.  RR  ( A. y  e.  { A ,  B }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  { A ,  B }
y  <  z )
) )
184, 17suplubti 7066 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  e.  RR  /\  C  <  sup ( { A ,  B } ,  RR ,  <  )
)  ->  E. z  e.  { A ,  B } C  <  z ) )
192, 18mpand 429 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  sup ( { A ,  B } ,  RR ,  <  )  ->  E. z  e.  { A ,  B } C  <  z ) )
20 elpri 3645 . . . . . . . . 9  |-  ( z  e.  { A ,  B }  ->  ( z  =  A  \/  z  =  B ) )
2120adantr 276 . . . . . . . 8  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  A  \/  z  =  B )
)
22 breq2 4037 . . . . . . . . . . 11  |-  ( z  =  A  ->  ( C  <  z  <->  C  <  A ) )
2322biimpcd 159 . . . . . . . . . 10  |-  ( C  <  z  ->  (
z  =  A  ->  C  <  A ) )
2423adantl 277 . . . . . . . . 9  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  A  ->  C  <  A ) )
25 breq2 4037 . . . . . . . . . . 11  |-  ( z  =  B  ->  ( C  <  z  <->  C  <  B ) )
2625biimpcd 159 . . . . . . . . . 10  |-  ( C  <  z  ->  (
z  =  B  ->  C  <  B ) )
2726adantl 277 . . . . . . . . 9  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
z  =  B  ->  C  <  B ) )
2824, 27orim12d 787 . . . . . . . 8  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  (
( z  =  A  \/  z  =  B )  ->  ( C  <  A  \/  C  < 
B ) ) )
2921, 28mpd 13 . . . . . . 7  |-  ( ( z  e.  { A ,  B }  /\  C  <  z )  ->  ( C  <  A  \/  C  <  B ) )
3029rexlimiva 2609 . . . . . 6  |-  ( E. z  e.  { A ,  B } C  < 
z  ->  ( C  <  A  \/  C  < 
B ) )
3119, 30syl6 33 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  <  sup ( { A ,  B } ,  RR ,  <  )  ->  ( C  <  A  \/  C  <  B ) ) )
3231con3d 632 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -.  ( C  <  A  \/  C  <  B )  ->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
331, 32biimtrrid 153 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( -.  C  < 
A  /\  -.  C  <  B )  ->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
34 simp1 999 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
3534, 2lenltd 8144 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  C  <->  -.  C  <  A ) )
36 simp2 1000 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
3736, 2lenltd 8144 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <_  C  <->  -.  C  <  B ) )
3835, 37anbi12d 473 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  C  /\  B  <_  C )  <-> 
( -.  C  < 
A  /\  -.  C  <  B ) ) )
394, 17supclti 7064 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
4039, 2lenltd 8144 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <_  C  <->  -.  C  <  sup ( { A ,  B } ,  RR ,  <  ) ) )
4133, 38, 403imtr4d 203 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  <_  C  /\  B  <_  C )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C
) )
4241imp 124 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <_  C  /\  B  <_  C ) )  ->  sup ( { A ,  B } ,  RR ,  <  )  <_  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   {cpr 3623   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   supcsup 7048   RRcr 7878    + caddc 7882    < clt 8061    <_ cle 8062    - cmin 8197    / cdiv 8699   2c2 9041   abscabs 11162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by:  maxleastb  11379  dfabsmax  11382
  Copyright terms: Public domain W3C validator