ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1 Unicode version

Theorem tfri1 6474
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47, with an additional condition.

The condition is that  G is defined "everywhere", which is stated here as  ( G `  x )  e.  _V. Alternately,  A. x  e.  On A. f ( f  Fn  x  -> 
f  e.  dom  G
) would suffice.

Given a function  G satisfying that condition, we define a class  A of all "acceptable" functions. The final function we're interested in is the union 
F  = recs ( G ) of them.  F is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of  F. In this first part we show that  F is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfri1.1  |-  F  = recs ( G )
tfri1.2  |-  ( Fun 
G  /\  ( G `  x )  e.  _V )
Assertion
Ref Expression
tfri1  |-  F  Fn  On
Distinct variable group:    x, G
Allowed substitution hint:    F( x)

Proof of Theorem tfri1
StepHypRef Expression
1 tfri1.1 . . 3  |-  F  = recs ( G )
2 tfri1.2 . . . . 5  |-  ( Fun 
G  /\  ( G `  x )  e.  _V )
32ax-gen 1473 . . . 4  |-  A. x
( Fun  G  /\  ( G `  x )  e.  _V )
43a1i 9 . . 3  |-  ( T. 
->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
51, 4tfri1d 6444 . 2  |-  ( T. 
->  F  Fn  On )
65mptru 1382 1  |-  F  Fn  On
Colors of variables: wff set class
Syntax hints:    /\ wa 104   A.wal 1371    = wceq 1373   T. wtru 1374    e. wcel 2178   _Vcvv 2776   Oncon0 4428   Fun wfun 5284    Fn wfn 5285   ` cfv 5290  recscrecs 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-recs 6414
This theorem is referenced by:  tfri2  6475  tfri3  6476
  Copyright terms: Public domain W3C validator