![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfri1 | GIF version |
Description: Principle of Transfinite
Recursion, part 1 of 3. Theorem 7.41(1) of
[TakeutiZaring] p. 47, with an
additional condition.
The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺‘𝑥) ∈ V. Alternately, ∀𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥 → 𝑓 ∈ dom 𝐺) would suffice. Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfri1.1 | ⊢ 𝐹 = recs(𝐺) |
tfri1.2 | ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) |
Ref | Expression |
---|---|
tfri1 | ⊢ 𝐹 Fn On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfri1.1 | . . 3 ⊢ 𝐹 = recs(𝐺) | |
2 | tfri1.2 | . . . . 5 ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) | |
3 | 2 | ax-gen 1460 | . . . 4 ⊢ ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) |
5 | 1, 4 | tfri1d 6361 | . 2 ⊢ (⊤ → 𝐹 Fn On) |
6 | 5 | mptru 1373 | 1 ⊢ 𝐹 Fn On |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∀wal 1362 = wceq 1364 ⊤wtru 1365 ∈ wcel 2160 Vcvv 2752 Oncon0 4381 Fun wfun 5229 Fn wfn 5230 ‘cfv 5235 recscrecs 6330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-iord 4384 df-on 4386 df-suc 4389 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-recs 6331 |
This theorem is referenced by: tfri2 6392 tfri3 6393 |
Copyright terms: Public domain | W3C validator |