ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1 GIF version

Theorem tfri1 6464
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47, with an additional condition.

The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺𝑥) ∈ V. Alternately, 𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥𝑓 ∈ dom 𝐺) would suffice.

Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfri1.1 𝐹 = recs(𝐺)
tfri1.2 (Fun 𝐺 ∧ (𝐺𝑥) ∈ V)
Assertion
Ref Expression
tfri1 𝐹 Fn On
Distinct variable group:   𝑥,𝐺
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tfri1
StepHypRef Expression
1 tfri1.1 . . 3 𝐹 = recs(𝐺)
2 tfri1.2 . . . . 5 (Fun 𝐺 ∧ (𝐺𝑥) ∈ V)
32ax-gen 1473 . . . 4 𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V)
43a1i 9 . . 3 (⊤ → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))
51, 4tfri1d 6434 . 2 (⊤ → 𝐹 Fn On)
65mptru 1382 1 𝐹 Fn On
Colors of variables: wff set class
Syntax hints:  wa 104  wal 1371   = wceq 1373  wtru 1374  wcel 2177  Vcvv 2773  Oncon0 4418  Fun wfun 5274   Fn wfn 5275  cfv 5280  recscrecs 6403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-recs 6404
This theorem is referenced by:  tfri2  6465  tfri3  6466
  Copyright terms: Public domain W3C validator