ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1 GIF version

Theorem tfri1 6509
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47, with an additional condition.

The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺𝑥) ∈ V. Alternately, 𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥𝑓 ∈ dom 𝐺) would suffice.

Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfri1.1 𝐹 = recs(𝐺)
tfri1.2 (Fun 𝐺 ∧ (𝐺𝑥) ∈ V)
Assertion
Ref Expression
tfri1 𝐹 Fn On
Distinct variable group:   𝑥,𝐺
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem tfri1
StepHypRef Expression
1 tfri1.1 . . 3 𝐹 = recs(𝐺)
2 tfri1.2 . . . . 5 (Fun 𝐺 ∧ (𝐺𝑥) ∈ V)
32ax-gen 1495 . . . 4 𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V)
43a1i 9 . . 3 (⊤ → ∀𝑥(Fun 𝐺 ∧ (𝐺𝑥) ∈ V))
51, 4tfri1d 6479 . 2 (⊤ → 𝐹 Fn On)
65mptru 1404 1 𝐹 Fn On
Colors of variables: wff set class
Syntax hints:  wa 104  wal 1393   = wceq 1395  wtru 1396  wcel 2200  Vcvv 2799  Oncon0 4453  Fun wfun 5311   Fn wfn 5312  cfv 5317  recscrecs 6448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-recs 6449
This theorem is referenced by:  tfri2  6510  tfri3  6511
  Copyright terms: Public domain W3C validator