| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > tfri1 | GIF version | ||
| Description: Principle of Transfinite
Recursion, part 1 of 3.  Theorem 7.41(1) of
       [TakeutiZaring] p. 47, with an
additional condition.
 The condition is that 𝐺 is defined "everywhere", which is stated here as (𝐺‘𝑥) ∈ V. Alternately, ∀𝑥 ∈ On∀𝑓(𝑓 Fn 𝑥 → 𝑓 ∈ dom 𝐺) would suffice. Given a function 𝐺 satisfying that condition, we define a class 𝐴 of all "acceptable" functions. The final function we're interested in is the union 𝐹 = recs(𝐺) of them. 𝐹 is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of 𝐹. In this first part we show that 𝐹 is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)  | 
| Ref | Expression | 
|---|---|
| tfri1.1 | ⊢ 𝐹 = recs(𝐺) | 
| tfri1.2 | ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) | 
| Ref | Expression | 
|---|---|
| tfri1 | ⊢ 𝐹 Fn On | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tfri1.1 | . . 3 ⊢ 𝐹 = recs(𝐺) | |
| 2 | tfri1.2 | . . . . 5 ⊢ (Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) | |
| 3 | 2 | ax-gen 1463 | . . . 4 ⊢ ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V) | 
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → ∀𝑥(Fun 𝐺 ∧ (𝐺‘𝑥) ∈ V)) | 
| 5 | 1, 4 | tfri1d 6393 | . 2 ⊢ (⊤ → 𝐹 Fn On) | 
| 6 | 5 | mptru 1373 | 1 ⊢ 𝐹 Fn On | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ∀wal 1362 = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 Vcvv 2763 Oncon0 4398 Fun wfun 5252 Fn wfn 5253 ‘cfv 5258 recscrecs 6362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-recs 6363 | 
| This theorem is referenced by: tfri2 6424 tfri3 6425 | 
| Copyright terms: Public domain | W3C validator |