ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponunii Unicode version

Theorem toponunii 12809
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
topontopi.1  |-  J  e.  (TopOn `  B )
Assertion
Ref Expression
toponunii  |-  B  = 
U. J

Proof of Theorem toponunii
StepHypRef Expression
1 topontopi.1 . 2  |-  J  e.  (TopOn `  B )
2 toponuni 12807 . 2  |-  ( J  e.  (TopOn `  B
)  ->  B  =  U. J )
31, 2ax-mp 5 1  |-  B  = 
U. J
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   U.cuni 3796   ` cfv 5198  TopOnctopon 12802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-topon 12803
This theorem is referenced by:  toponrestid  12813  unicntopcntop  13330  reldvg  13442  dvidlemap  13454  dvcnp2cntop  13457  dvaddxxbr  13459  dvmulxxbr  13460  dvcoapbr  13465
  Copyright terms: Public domain W3C validator