| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > toptopon | Unicode version | ||
| Description: Alternative definition of
 | 
| Ref | Expression | 
|---|---|
| toptopon.1 | 
 | 
| Ref | Expression | 
|---|---|
| toptopon | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | toptopon.1 | 
. . 3
 | |
| 2 | istopon 14249 | 
. . 3
 | |
| 3 | 1, 2 | mpbiran2 943 | 
. 2
 | 
| 4 | 3 | bicomi 132 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-topon 14247 | 
| This theorem is referenced by: toptopon2 14255 eltpsi 14277 restuni 14408 stoig 14409 iscn2 14436 lmcvg 14453 cnpnei 14455 cnss1 14462 cnss2 14463 cncnpi 14464 cncnp2m 14467 cnnei 14468 cnrest 14471 cnrest2 14472 cnrest2r 14473 cnptoprest 14475 cnptoprest2 14476 lmss 14482 txuni 14499 txcnmpt 14509 txcn 14511 cnmpt11 14519 cnmpt11f 14520 imasnopn 14535 hmeof1o 14545 hmeores 14551 txhmeo 14555 retopon 14762 | 
| Copyright terms: Public domain | W3C validator |