| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > toptopon | Unicode version | ||
| Description: Alternative definition of
|
| Ref | Expression |
|---|---|
| toptopon.1 |
|
| Ref | Expression |
|---|---|
| toptopon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon.1 |
. . 3
| |
| 2 | istopon 14518 |
. . 3
| |
| 3 | 1, 2 | mpbiran2 944 |
. 2
|
| 4 | 3 | bicomi 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-topon 14516 |
| This theorem is referenced by: toptopon2 14524 eltpsi 14546 restuni 14677 stoig 14678 iscn2 14705 lmcvg 14722 cnpnei 14724 cnss1 14731 cnss2 14732 cncnpi 14733 cncnp2m 14736 cnnei 14737 cnrest 14740 cnrest2 14741 cnrest2r 14742 cnptoprest 14744 cnptoprest2 14745 lmss 14751 txuni 14768 txcnmpt 14778 txcn 14780 cnmpt11 14788 cnmpt11f 14789 imasnopn 14804 hmeof1o 14814 hmeores 14820 txhmeo 14824 retopon 15031 |
| Copyright terms: Public domain | W3C validator |