| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > toptopon | Unicode version | ||
| Description: Alternative definition of
|
| Ref | Expression |
|---|---|
| toptopon.1 |
|
| Ref | Expression |
|---|---|
| toptopon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon.1 |
. . 3
| |
| 2 | istopon 14600 |
. . 3
| |
| 3 | 1, 2 | mpbiran2 944 |
. 2
|
| 4 | 3 | bicomi 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-topon 14598 |
| This theorem is referenced by: toptopon2 14606 eltpsi 14628 restuni 14759 stoig 14760 iscn2 14787 lmcvg 14804 cnpnei 14806 cnss1 14813 cnss2 14814 cncnpi 14815 cncnp2m 14818 cnnei 14819 cnrest 14822 cnrest2 14823 cnrest2r 14824 cnptoprest 14826 cnptoprest2 14827 lmss 14833 txuni 14850 txcnmpt 14860 txcn 14862 cnmpt11 14870 cnmpt11f 14871 imasnopn 14886 hmeof1o 14896 hmeores 14902 txhmeo 14906 retopon 15113 |
| Copyright terms: Public domain | W3C validator |