ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponunii GIF version

Theorem toponunii 13657
Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
topontopi.1 𝐽 ∈ (TopOnβ€˜π΅)
Assertion
Ref Expression
toponunii 𝐡 = βˆͺ 𝐽

Proof of Theorem toponunii
StepHypRef Expression
1 topontopi.1 . 2 𝐽 ∈ (TopOnβ€˜π΅)
2 toponuni 13655 . 2 (𝐽 ∈ (TopOnβ€˜π΅) β†’ 𝐡 = βˆͺ 𝐽)
31, 2ax-mp 5 1 𝐡 = βˆͺ 𝐽
Colors of variables: wff set class
Syntax hints:   = wceq 1353   ∈ wcel 2148  βˆͺ cuni 3811  β€˜cfv 5218  TopOnctopon 13650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-topon 13651
This theorem is referenced by:  toponrestid  13661  unicntopcntop  14176  reldvg  14288  dvidlemap  14300  dvcnp2cntop  14303  dvaddxxbr  14305  dvmulxxbr  14306  dvcoapbr  14311
  Copyright terms: Public domain W3C validator