Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tposf1o2 | Unicode version |
Description: Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposf1o2 | tpos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposf12 6229 | . . 3 tpos | |
2 | tposfo2 6227 | . . 3 tpos | |
3 | 1, 2 | anim12d 333 | . 2 tpos tpos |
4 | df-f1o 5190 | . 2 | |
5 | df-f1o 5190 | . 2 tpos tpos tpos | |
6 | 3, 4, 5 | 3imtr4g 204 | 1 tpos |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 ccnv 4598 wrel 4604 wf1 5180 wfo 5181 wf1o 5182 tpos ctpos 6204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-nul 4103 ax-pow 4148 ax-pr 4182 ax-un 4406 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-rab 2451 df-v 2724 df-sbc 2948 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-opab 4039 df-mpt 4040 df-id 4266 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-1st 6101 df-2nd 6102 df-tpos 6205 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |