ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposf1o2 Unicode version

Theorem tposf1o2 6414
Description: Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf1o2  |-  ( Rel 
A  ->  ( F : A -1-1-onto-> B  -> tpos  F : `' A
-1-1-onto-> B ) )

Proof of Theorem tposf1o2
StepHypRef Expression
1 tposf12 6413 . . 3  |-  ( Rel 
A  ->  ( F : A -1-1-> B  -> tpos  F : `' A -1-1-> B ) )
2 tposfo2 6411 . . 3  |-  ( Rel 
A  ->  ( F : A -onto-> B  -> tpos  F : `' A -onto-> B ) )
31, 2anim12d 335 . 2  |-  ( Rel 
A  ->  ( ( F : A -1-1-> B  /\  F : A -onto-> B )  ->  (tpos  F : `' A -1-1-> B  /\ tpos  F : `' A -onto-> B ) ) )
4 df-f1o 5324 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
5 df-f1o 5324 . 2  |-  (tpos  F : `' A -1-1-onto-> B  <->  (tpos  F : `' A -1-1-> B  /\ tpos  F : `' A -onto-> B ) )
63, 4, 53imtr4g 205 1  |-  ( Rel 
A  ->  ( F : A -1-1-onto-> B  -> tpos  F : `' A
-1-1-onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   `'ccnv 4717   Rel wrel 4723   -1-1->wf1 5314   -onto->wfo 5315   -1-1-onto->wf1o 5316  tpos ctpos 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-tpos 6389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator