ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposf1o2 GIF version

Theorem tposf1o2 6422
Description: Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf1o2 (Rel 𝐴 → (𝐹:𝐴1-1-onto𝐵 → tpos 𝐹:𝐴1-1-onto𝐵))

Proof of Theorem tposf1o2
StepHypRef Expression
1 tposf12 6421 . . 3 (Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))
2 tposfo2 6419 . . 3 (Rel 𝐴 → (𝐹:𝐴onto𝐵 → tpos 𝐹:𝐴onto𝐵))
31, 2anim12d 335 . 2 (Rel 𝐴 → ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) → (tpos 𝐹:𝐴1-1𝐵 ∧ tpos 𝐹:𝐴onto𝐵)))
4 df-f1o 5325 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
5 df-f1o 5325 . 2 (tpos 𝐹:𝐴1-1-onto𝐵 ↔ (tpos 𝐹:𝐴1-1𝐵 ∧ tpos 𝐹:𝐴onto𝐵))
63, 4, 53imtr4g 205 1 (Rel 𝐴 → (𝐹:𝐴1-1-onto𝐵 → tpos 𝐹:𝐴1-1-onto𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  ccnv 4718  Rel wrel 4724  1-1wf1 5315  ontowfo 5316  1-1-ontowf1o 5317  tpos ctpos 6396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6292  df-2nd 6293  df-tpos 6397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator