ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposf1o2 GIF version

Theorem tposf1o2 6289
Description: Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf1o2 (Rel 𝐴 → (𝐹:𝐴1-1-onto𝐵 → tpos 𝐹:𝐴1-1-onto𝐵))

Proof of Theorem tposf1o2
StepHypRef Expression
1 tposf12 6288 . . 3 (Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))
2 tposfo2 6286 . . 3 (Rel 𝐴 → (𝐹:𝐴onto𝐵 → tpos 𝐹:𝐴onto𝐵))
31, 2anim12d 335 . 2 (Rel 𝐴 → ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) → (tpos 𝐹:𝐴1-1𝐵 ∧ tpos 𝐹:𝐴onto𝐵)))
4 df-f1o 5238 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
5 df-f1o 5238 . 2 (tpos 𝐹:𝐴1-1-onto𝐵 ↔ (tpos 𝐹:𝐴1-1𝐵 ∧ tpos 𝐹:𝐴onto𝐵))
63, 4, 53imtr4g 205 1 (Rel 𝐴 → (𝐹:𝐴1-1-onto𝐵 → tpos 𝐹:𝐴1-1-onto𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  ccnv 4640  Rel wrel 4646  1-1wf1 5228  ontowfo 5229  1-1-ontowf1o 5230  tpos ctpos 6263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-1st 6159  df-2nd 6160  df-tpos 6264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator