Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > distps | Unicode version |
Description: The discrete topology on a set expressed as a topological space. (Contributed by FL, 20-Aug-2006.) |
Ref | Expression |
---|---|
distps.a | |
distps.k | TopSet |
Ref | Expression |
---|---|
distps |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distps.k | . 2 TopSet | |
2 | unipw 4176 | . . 3 | |
3 | 2 | eqcomi 2161 | . 2 |
4 | distps.a | . . 3 | |
5 | distop 12445 | . . 3 | |
6 | 4, 5 | ax-mp 5 | . 2 |
7 | 1, 3, 6 | eltpsi 12399 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 wcel 2128 cvv 2712 cpw 3543 cpr 3561 cop 3563 cuni 3772 cfv 5167 cnx 12147 cbs 12150 TopSetcts 12218 ctop 12355 ctps 12388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-i2m1 7820 ax-0lt1 7821 ax-0id 7823 ax-rnegex 7824 ax-pre-ltirr 7827 ax-pre-lttrn 7829 ax-pre-ltadd 7831 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-pnf 7897 df-mnf 7898 df-ltxr 7900 df-inn 8817 df-2 8875 df-3 8876 df-4 8877 df-5 8878 df-6 8879 df-7 8880 df-8 8881 df-9 8882 df-ndx 12153 df-slot 12154 df-base 12156 df-tset 12231 df-rest 12313 df-topn 12314 df-top 12356 df-topon 12369 df-topsp 12389 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |