| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpcomf1o | GIF version | ||
| Description: The canonical bijection from (𝐴 × 𝐵) to (𝐵 × 𝐴). (Contributed by Mario Carneiro, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| xpcomf1o.1 | ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) |
| Ref | Expression |
|---|---|
| xpcomf1o | ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 4791 | . . . 4 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | cnvf1o 6323 | . . . 4 ⊢ (Rel (𝐴 × 𝐵) → (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) |
| 4 | xpcomf1o.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) | |
| 5 | f1oeq1 5521 | . . . 4 ⊢ (𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) → (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵))) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵)) |
| 7 | 3, 6 | mpbir 146 | . 2 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) |
| 8 | cnvxp 5109 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 9 | f1oeq3 5523 | . . 3 ⊢ (◡(𝐴 × 𝐵) = (𝐵 × 𝐴) → (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴))) | |
| 10 | 8, 9 | ax-mp 5 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) |
| 11 | 7, 10 | mpbi 145 | 1 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 {csn 3637 ∪ cuni 3855 ↦ cmpt 4112 × cxp 4680 ◡ccnv 4681 Rel wrel 4687 –1-1-onto→wf1o 5278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-1st 6238 df-2nd 6239 |
| This theorem is referenced by: xpcomco 6935 xpcomen 6936 |
| Copyright terms: Public domain | W3C validator |