| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpcomf1o | GIF version | ||
| Description: The canonical bijection from (𝐴 × 𝐵) to (𝐵 × 𝐴). (Contributed by Mario Carneiro, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| xpcomf1o.1 | ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) |
| Ref | Expression |
|---|---|
| xpcomf1o | ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 4825 | . . . 4 ⊢ Rel (𝐴 × 𝐵) | |
| 2 | cnvf1o 6361 | . . . 4 ⊢ (Rel (𝐴 × 𝐵) → (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) |
| 4 | xpcomf1o.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) | |
| 5 | f1oeq1 5556 | . . . 4 ⊢ (𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) → (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵))) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}):(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵)) |
| 7 | 3, 6 | mpbir 146 | . 2 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) |
| 8 | cnvxp 5143 | . . 3 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 9 | f1oeq3 5558 | . . 3 ⊢ (◡(𝐴 × 𝐵) = (𝐵 × 𝐴) → (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴))) | |
| 10 | 8, 9 | ax-mp 5 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→◡(𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)) |
| 11 | 7, 10 | mpbi 145 | 1 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 {csn 3666 ∪ cuni 3887 ↦ cmpt 4144 × cxp 4714 ◡ccnv 4715 Rel wrel 4721 –1-1-onto→wf1o 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-1st 6276 df-2nd 6277 |
| This theorem is referenced by: xpcomco 6973 xpcomen 6974 |
| Copyright terms: Public domain | W3C validator |