ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsnen2g Unicode version

Theorem xpsnen2g 6883
Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
xpsnen2g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  B
)

Proof of Theorem xpsnen2g
StepHypRef Expression
1 snexg 4213 . . 3  |-  ( A  e.  V  ->  { A }  e.  _V )
2 xpcomeng 6882 . . 3  |-  ( ( { A }  e.  _V  /\  B  e.  W
)  ->  ( { A }  X.  B
)  ~~  ( B  X.  { A } ) )
31, 2sylan 283 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  ( B  X.  { A }
) )
4 xpsneng 6876 . . 3  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( B  X.  { A } )  ~~  B
)
54ancoms 268 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  X.  { A } )  ~~  B
)
6 entr 6838 . 2  |-  ( ( ( { A }  X.  B )  ~~  ( B  X.  { A }
)  /\  ( B  X.  { A } ) 
~~  B )  -> 
( { A }  X.  B )  ~~  B
)
73, 5, 6syl2anc 411 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   _Vcvv 2760   {csn 3618   class class class wbr 4029    X. cxp 4657    ~~ cen 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-er 6587  df-en 6795
This theorem is referenced by:  djucomen  7276  djuassen  7277  xpdjuen  7278  lgsquadlem1  15191
  Copyright terms: Public domain W3C validator