ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsnen2g Unicode version

Theorem xpsnen2g 6829
Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
xpsnen2g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  B
)

Proof of Theorem xpsnen2g
StepHypRef Expression
1 snexg 4185 . . 3  |-  ( A  e.  V  ->  { A }  e.  _V )
2 xpcomeng 6828 . . 3  |-  ( ( { A }  e.  _V  /\  B  e.  W
)  ->  ( { A }  X.  B
)  ~~  ( B  X.  { A } ) )
31, 2sylan 283 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  ( B  X.  { A }
) )
4 xpsneng 6822 . . 3  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( B  X.  { A } )  ~~  B
)
54ancoms 268 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  X.  { A } )  ~~  B
)
6 entr 6784 . 2  |-  ( ( ( { A }  X.  B )  ~~  ( B  X.  { A }
)  /\  ( B  X.  { A } ) 
~~  B )  -> 
( { A }  X.  B )  ~~  B
)
73, 5, 6syl2anc 411 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   _Vcvv 2738   {csn 3593   class class class wbr 4004    X. cxp 4625    ~~ cen 6738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-1st 6141  df-2nd 6142  df-er 6535  df-en 6741
This theorem is referenced by:  djucomen  7215  djuassen  7216  xpdjuen  7217
  Copyright terms: Public domain W3C validator