ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsnen2g Unicode version

Theorem xpsnen2g 6885
Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
xpsnen2g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  B
)

Proof of Theorem xpsnen2g
StepHypRef Expression
1 snexg 4214 . . 3  |-  ( A  e.  V  ->  { A }  e.  _V )
2 xpcomeng 6884 . . 3  |-  ( ( { A }  e.  _V  /\  B  e.  W
)  ->  ( { A }  X.  B
)  ~~  ( B  X.  { A } ) )
31, 2sylan 283 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  ( B  X.  { A }
) )
4 xpsneng 6878 . . 3  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( B  X.  { A } )  ~~  B
)
54ancoms 268 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( B  X.  { A } )  ~~  B
)
6 entr 6840 . 2  |-  ( ( ( { A }  X.  B )  ~~  ( B  X.  { A }
)  /\  ( B  X.  { A } ) 
~~  B )  -> 
( { A }  X.  B )  ~~  B
)
73, 5, 6syl2anc 411 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( { A }  X.  B )  ~~  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   _Vcvv 2760   {csn 3619   class class class wbr 4030    X. cxp 4658    ~~ cen 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-er 6589  df-en 6797
This theorem is referenced by:  djucomen  7278  djuassen  7279  xpdjuen  7280  lgsquadlem1  15234  lgsquadlem2  15235
  Copyright terms: Public domain W3C validator