| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpsnen2g | GIF version | ||
| Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| Ref | Expression |
|---|---|
| xpsnen2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snexg 4244 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
| 2 | xpcomeng 6948 | . . 3 ⊢ (({𝐴} ∈ V ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴})) | |
| 3 | 1, 2 | sylan 283 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴})) |
| 4 | xpsneng 6942 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 × {𝐴}) ≈ 𝐵) | |
| 5 | 4 | ancoms 268 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × {𝐴}) ≈ 𝐵) |
| 6 | entr 6899 | . 2 ⊢ ((({𝐴} × 𝐵) ≈ (𝐵 × {𝐴}) ∧ (𝐵 × {𝐴}) ≈ 𝐵) → ({𝐴} × 𝐵) ≈ 𝐵) | |
| 7 | 3, 5, 6 | syl2anc 411 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × 𝐵) ≈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 Vcvv 2776 {csn 3643 class class class wbr 4059 × cxp 4691 ≈ cen 6848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-er 6643 df-en 6851 |
| This theorem is referenced by: djucomen 7359 djuassen 7360 xpdjuen 7361 lgsquadlem1 15669 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |