ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsnen2g GIF version

Theorem xpsnen2g 6949
Description: A set is equinumerous to its Cartesian product with a singleton on the left. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
xpsnen2g ((𝐴𝑉𝐵𝑊) → ({𝐴} × 𝐵) ≈ 𝐵)

Proof of Theorem xpsnen2g
StepHypRef Expression
1 snexg 4244 . . 3 (𝐴𝑉 → {𝐴} ∈ V)
2 xpcomeng 6948 . . 3 (({𝐴} ∈ V ∧ 𝐵𝑊) → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴}))
31, 2sylan 283 . 2 ((𝐴𝑉𝐵𝑊) → ({𝐴} × 𝐵) ≈ (𝐵 × {𝐴}))
4 xpsneng 6942 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐵 × {𝐴}) ≈ 𝐵)
54ancoms 268 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 × {𝐴}) ≈ 𝐵)
6 entr 6899 . 2 ((({𝐴} × 𝐵) ≈ (𝐵 × {𝐴}) ∧ (𝐵 × {𝐴}) ≈ 𝐵) → ({𝐴} × 𝐵) ≈ 𝐵)
73, 5, 6syl2anc 411 1 ((𝐴𝑉𝐵𝑊) → ({𝐴} × 𝐵) ≈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2178  Vcvv 2776  {csn 3643   class class class wbr 4059   × cxp 4691  cen 6848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-er 6643  df-en 6851
This theorem is referenced by:  djucomen  7359  djuassen  7360  xpdjuen  7361  lgsquadlem1  15669  lgsquadlem2  15670
  Copyright terms: Public domain W3C validator