ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltletrd Unicode version

Theorem xrltletrd 9606
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
xrlttrd.1  |-  ( ph  ->  A  e.  RR* )
xrlttrd.2  |-  ( ph  ->  B  e.  RR* )
xrlttrd.3  |-  ( ph  ->  C  e.  RR* )
xrltletrd.4  |-  ( ph  ->  A  <  B )
xrltletrd.5  |-  ( ph  ->  B  <_  C )
Assertion
Ref Expression
xrltletrd  |-  ( ph  ->  A  <  C )

Proof of Theorem xrltletrd
StepHypRef Expression
1 xrltletrd.4 . 2  |-  ( ph  ->  A  <  B )
2 xrltletrd.5 . 2  |-  ( ph  ->  B  <_  C )
3 xrlttrd.1 . . 3  |-  ( ph  ->  A  e.  RR* )
4 xrlttrd.2 . . 3  |-  ( ph  ->  B  e.  RR* )
5 xrlttrd.3 . . 3  |-  ( ph  ->  C  e.  RR* )
6 xrltletr 9602 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <  B  /\  B  <_  C )  ->  A  <  C
) )
73, 4, 5, 6syl3anc 1216 . 2  |-  ( ph  ->  ( ( A  < 
B  /\  B  <_  C )  ->  A  <  C ) )
81, 2, 7mp2and 429 1  |-  ( ph  ->  A  <  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1480   class class class wbr 3929   RR*cxr 7811    < clt 7812    <_ cle 7813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-po 4218  df-iso 4219  df-xp 4545  df-cnv 4547  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818
This theorem is referenced by:  xlt2add  9675  elico2  9732  elicc2  9733  xrltmaxsup  11038  xblss2ps  12587  xblss2  12588  tgioo  12729
  Copyright terms: Public domain W3C validator