ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrletr Unicode version

Theorem xrletr 9929
Description: Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.)
Assertion
Ref Expression
xrletr  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )

Proof of Theorem xrletr
StepHypRef Expression
1 xrltso 9917 . . . . . 6  |-  <  Or  RR*
2 sowlin 4366 . . . . . 6  |-  ( (  <  Or  RR*  /\  ( C  e.  RR*  /\  A  e.  RR*  /\  B  e. 
RR* ) )  -> 
( C  <  A  ->  ( C  <  B  \/  B  <  A ) ) )
31, 2mpan 424 . . . . 5  |-  ( ( C  e.  RR*  /\  A  e.  RR*  /\  B  e. 
RR* )  ->  ( C  <  A  ->  ( C  <  B  \/  B  <  A ) ) )
433coml 1212 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  <  A  ->  ( C  <  B  \/  B  <  A ) ) )
5 orcom 729 . . . 4  |-  ( ( C  <  B  \/  B  <  A )  <->  ( B  <  A  \/  C  < 
B ) )
64, 5imbitrdi 161 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  <  A  ->  ( B  <  A  \/  C  <  B ) ) )
76con3d 632 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( -.  ( B  <  A  \/  C  <  B )  ->  -.  C  <  A ) )
8 xrlenlt 8136 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
983adant3 1019 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
10 xrlenlt 8136 . . . . 5  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B  <_  C  <->  -.  C  <  B ) )
11103adant1 1017 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  <_  C  <->  -.  C  <  B ) )
129, 11anbi12d 473 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <_  C )  <-> 
( -.  B  < 
A  /\  -.  C  <  B ) ) )
13 ioran 753 . . 3  |-  ( -.  ( B  <  A  \/  C  <  B )  <-> 
( -.  B  < 
A  /\  -.  C  <  B ) )
1412, 13bitr4di 198 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <_  C )  <->  -.  ( B  <  A  \/  C  <  B ) ) )
15 xrlenlt 8136 . . 3  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A  <_  C  <->  -.  C  <  A ) )
16153adant2 1018 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  <_  C  <->  -.  C  <  A ) )
177, 14, 163imtr4d 203 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( A  <_  B  /\  B  <_  C )  ->  A  <_  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    e. wcel 2175   class class class wbr 4043    Or wor 4341   RR*cxr 8105    < clt 8106    <_ cle 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-po 4342  df-iso 4343  df-xp 4680  df-cnv 4682  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112
This theorem is referenced by:  xrletrd  9933  xle2add  10000  icc0r  10047  iccss  10062  icossico  10064  iccss2  10065  iccssico  10066  bdxmet  14944
  Copyright terms: Public domain W3C validator