Proof of Theorem add20
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpllr 534 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 0 ≤ 𝐴) | 
| 2 |   | simplrl 535 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 ∈ ℝ) | 
| 3 |   | simplll 533 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐴 ∈ ℝ) | 
| 4 |   | addge02 8500 | 
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤
𝐴 ↔ 𝐵 ≤ (𝐴 + 𝐵))) | 
| 5 | 2, 3, 4 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (0 ≤ 𝐴 ↔ 𝐵 ≤ (𝐴 + 𝐵))) | 
| 6 | 1, 5 | mpbid 147 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 ≤ (𝐴 + 𝐵)) | 
| 7 |   | simpr 110 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 + 𝐵) = 0) | 
| 8 | 6, 7 | breqtrd 4059 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 ≤ 0) | 
| 9 |   | simplrr 536 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 0 ≤ 𝐵) | 
| 10 |   | 0red 8027 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 0 ∈
ℝ) | 
| 11 | 2, 10 | letri3d 8142 | 
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐵 = 0 ↔ (𝐵 ≤ 0 ∧ 0 ≤ 𝐵))) | 
| 12 | 8, 9, 11 | mpbir2and 946 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 = 0) | 
| 13 | 12 | oveq2d 5938 | 
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 + 𝐵) = (𝐴 + 0)) | 
| 14 | 3 | recnd 8055 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐴 ∈ ℂ) | 
| 15 | 14 | addridd 8175 | 
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 + 0) = 𝐴) | 
| 16 | 13, 7, 15 | 3eqtr3rd 2238 | 
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐴 = 0) | 
| 17 | 16, 12 | jca 306 | 
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 = 0 ∧ 𝐵 = 0)) | 
| 18 | 17 | ex 115 | 
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))) | 
| 19 |   | oveq12 5931 | 
. . 3
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + 𝐵) = (0 + 0)) | 
| 20 |   | 00id 8167 | 
. . 3
⊢ (0 + 0) =
0 | 
| 21 | 19, 20 | eqtrdi 2245 | 
. 2
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + 𝐵) = 0) | 
| 22 | 18, 21 | impbid1 142 | 
1
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |