ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add20 GIF version

Theorem add20 8372
Description: Two nonnegative numbers are zero iff their sum is zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
add20 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))

Proof of Theorem add20
StepHypRef Expression
1 simpllr 524 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 0 ≤ 𝐴)
2 simplrl 525 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 ∈ ℝ)
3 simplll 523 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐴 ∈ ℝ)
4 addge02 8371 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴𝐵 ≤ (𝐴 + 𝐵)))
52, 3, 4syl2anc 409 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (0 ≤ 𝐴𝐵 ≤ (𝐴 + 𝐵)))
61, 5mpbid 146 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 ≤ (𝐴 + 𝐵))
7 simpr 109 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 + 𝐵) = 0)
86, 7breqtrd 4008 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 ≤ 0)
9 simplrr 526 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 0 ≤ 𝐵)
10 0red 7900 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 0 ∈ ℝ)
112, 10letri3d 8014 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐵 = 0 ↔ (𝐵 ≤ 0 ∧ 0 ≤ 𝐵)))
128, 9, 11mpbir2and 934 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐵 = 0)
1312oveq2d 5858 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 + 𝐵) = (𝐴 + 0))
143recnd 7927 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐴 ∈ ℂ)
1514addid1d 8047 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 + 0) = 𝐴)
1613, 7, 153eqtr3rd 2207 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → 𝐴 = 0)
1716, 12jca 304 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) ∧ (𝐴 + 𝐵) = 0) → (𝐴 = 0 ∧ 𝐵 = 0))
1817ex 114 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
19 oveq12 5851 . . 3 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + 𝐵) = (0 + 0))
20 00id 8039 . . 3 (0 + 0) = 0
2119, 20eqtrdi 2215 . 2 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 + 𝐵) = 0)
2218, 21impbid1 141 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136   class class class wbr 3982  (class class class)co 5842  cr 7752  0cc0 7753   + caddc 7756  cle 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-pre-ltirr 7865  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-iota 5153  df-fv 5196  df-ov 5845  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939
This theorem is referenced by:  add20i  8390  xnn0xadd0  9803  sumsqeq0  10533  2sqlem7  13597
  Copyright terms: Public domain W3C validator