ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abs00ap GIF version

Theorem abs00ap 11206
Description: The absolute value of a number is apart from zero iff the number is apart from zero. (Contributed by Jim Kingdon, 11-Aug-2021.)
Assertion
Ref Expression
abs00ap (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))

Proof of Theorem abs00ap
StepHypRef Expression
1 absval2 11201 . . . . . . . . . 10 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
21breq1d 4039 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # 0))
3 sqrt0 11148 . . . . . . . . . 10 (√‘0) = 0
43breq2i 4037 . . . . . . . . 9 ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘0) ↔ (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # 0)
52, 4bitr4di 198 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘0)))
6 recl 10997 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
76resqcld 10770 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℝ)
8 imcl 10998 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
98resqcld 10770 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℝ)
107, 9readdcld 8049 . . . . . . . . 9 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ)
116sqge0d 10771 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 ≤ ((ℜ‘𝐴)↑2))
128sqge0d 10771 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 ≤ ((ℑ‘𝐴)↑2))
137, 9, 11, 12addge0d 8541 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
14 0red 8020 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ∈ ℝ)
1514leidd 8533 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ 0)
16 sqrt11ap 11182 . . . . . . . . 9 ((((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ ∧ 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) ∧ (0 ∈ ℝ ∧ 0 ≤ 0)) → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘0) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # 0))
1710, 13, 14, 15, 16syl22anc 1250 . . . . . . . 8 (𝐴 ∈ ℂ → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘0) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # 0))
185, 17bitrd 188 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # 0))
19 00id 8160 . . . . . . . 8 (0 + 0) = 0
2019breq2i 4037 . . . . . . 7 ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (0 + 0) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # 0)
2118, 20bitr4di 198 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (0 + 0)))
227recnd 8048 . . . . . . 7 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℂ)
239recnd 8048 . . . . . . 7 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℂ)
24 0cnd 8012 . . . . . . 7 (𝐴 ∈ ℂ → 0 ∈ ℂ)
25 addext 8629 . . . . . . 7 (((((ℜ‘𝐴)↑2) ∈ ℂ ∧ ((ℑ‘𝐴)↑2) ∈ ℂ) ∧ (0 ∈ ℂ ∧ 0 ∈ ℂ)) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (0 + 0) → (((ℜ‘𝐴)↑2) # 0 ∨ ((ℑ‘𝐴)↑2) # 0)))
2622, 23, 24, 24, 25syl22anc 1250 . . . . . 6 (𝐴 ∈ ℂ → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (0 + 0) → (((ℜ‘𝐴)↑2) # 0 ∨ ((ℑ‘𝐴)↑2) # 0)))
2721, 26sylbid 150 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 → (((ℜ‘𝐴)↑2) # 0 ∨ ((ℑ‘𝐴)↑2) # 0)))
286recnd 8048 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
29 2nn 9143 . . . . . . 7 2 ∈ ℕ
30 expap0 10640 . . . . . . 7 (((ℜ‘𝐴) ∈ ℂ ∧ 2 ∈ ℕ) → (((ℜ‘𝐴)↑2) # 0 ↔ (ℜ‘𝐴) # 0))
3128, 29, 30sylancl 413 . . . . . 6 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) # 0 ↔ (ℜ‘𝐴) # 0))
328recnd 8048 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
33 expap0 10640 . . . . . . 7 (((ℑ‘𝐴) ∈ ℂ ∧ 2 ∈ ℕ) → (((ℑ‘𝐴)↑2) # 0 ↔ (ℑ‘𝐴) # 0))
3432, 29, 33sylancl 413 . . . . . 6 (𝐴 ∈ ℂ → (((ℑ‘𝐴)↑2) # 0 ↔ (ℑ‘𝐴) # 0))
3531, 34orbi12d 794 . . . . 5 (𝐴 ∈ ℂ → ((((ℜ‘𝐴)↑2) # 0 ∨ ((ℑ‘𝐴)↑2) # 0) ↔ ((ℜ‘𝐴) # 0 ∨ (ℑ‘𝐴) # 0)))
3627, 35sylibd 149 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 → ((ℜ‘𝐴) # 0 ∨ (ℑ‘𝐴) # 0)))
37 crap0 8977 . . . . 5 (((ℜ‘𝐴) ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (((ℜ‘𝐴) # 0 ∨ (ℑ‘𝐴) # 0) ↔ ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # 0))
386, 8, 37syl2anc 411 . . . 4 (𝐴 ∈ ℂ → (((ℜ‘𝐴) # 0 ∨ (ℑ‘𝐴) # 0) ↔ ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # 0))
3936, 38sylibd 149 . . 3 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # 0))
40 replim 11003 . . . 4 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4140breq1d 4039 . . 3 (𝐴 ∈ ℂ → (𝐴 # 0 ↔ ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # 0))
4239, 41sylibrd 169 . 2 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 → 𝐴 # 0))
43 absrpclap 11205 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) ∈ ℝ+)
4443rpap0d 9768 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) # 0)
4544ex 115 . 2 (𝐴 ∈ ℂ → (𝐴 # 0 → (abs‘𝐴) # 0))
4642, 45impbid 129 1 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  wcel 2164   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  ici 7874   + caddc 7875   · cmul 7877  cle 8055   # cap 8600  cn 8982  2c2 9033  cexp 10609  cre 10984  cim 10985  csqrt 11140  abscabs 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  abs00  11208  absexpzap  11224  ltabs  11231  recvalap  11241  absgt0ap  11243  georeclim  11656  geoisumr  11661  cnopnap  14765  ltlenmkv  15560
  Copyright terms: Public domain W3C validator