ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abs00ap GIF version

Theorem abs00ap 10827
Description: The absolute value of a number is apart from zero iff the number is apart from zero. (Contributed by Jim Kingdon, 11-Aug-2021.)
Assertion
Ref Expression
abs00ap (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))

Proof of Theorem abs00ap
StepHypRef Expression
1 absval2 10822 . . . . . . . . . 10 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
21breq1d 3934 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # 0))
3 sqrt0 10769 . . . . . . . . . 10 (√‘0) = 0
43breq2i 3932 . . . . . . . . 9 ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘0) ↔ (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # 0)
52, 4syl6bbr 197 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘0)))
6 recl 10618 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
76resqcld 10443 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℝ)
8 imcl 10619 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
98resqcld 10443 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℝ)
107, 9readdcld 7788 . . . . . . . . 9 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ)
116sqge0d 10444 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 ≤ ((ℜ‘𝐴)↑2))
128sqge0d 10444 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 ≤ ((ℑ‘𝐴)↑2))
137, 9, 11, 12addge0d 8277 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
14 0red 7760 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ∈ ℝ)
1514leidd 8269 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ 0)
16 sqrt11ap 10803 . . . . . . . . 9 ((((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ ∧ 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) ∧ (0 ∈ ℝ ∧ 0 ≤ 0)) → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘0) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # 0))
1710, 13, 14, 15, 16syl22anc 1217 . . . . . . . 8 (𝐴 ∈ ℂ → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘0) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # 0))
185, 17bitrd 187 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # 0))
19 00id 7896 . . . . . . . 8 (0 + 0) = 0
2019breq2i 3932 . . . . . . 7 ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (0 + 0) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # 0)
2118, 20syl6bbr 197 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (0 + 0)))
227recnd 7787 . . . . . . 7 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℂ)
239recnd 7787 . . . . . . 7 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℂ)
24 0cnd 7752 . . . . . . 7 (𝐴 ∈ ℂ → 0 ∈ ℂ)
25 addext 8365 . . . . . . 7 (((((ℜ‘𝐴)↑2) ∈ ℂ ∧ ((ℑ‘𝐴)↑2) ∈ ℂ) ∧ (0 ∈ ℂ ∧ 0 ∈ ℂ)) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (0 + 0) → (((ℜ‘𝐴)↑2) # 0 ∨ ((ℑ‘𝐴)↑2) # 0)))
2622, 23, 24, 24, 25syl22anc 1217 . . . . . 6 (𝐴 ∈ ℂ → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (0 + 0) → (((ℜ‘𝐴)↑2) # 0 ∨ ((ℑ‘𝐴)↑2) # 0)))
2721, 26sylbid 149 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 → (((ℜ‘𝐴)↑2) # 0 ∨ ((ℑ‘𝐴)↑2) # 0)))
286recnd 7787 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
29 2nn 8874 . . . . . . 7 2 ∈ ℕ
30 expap0 10316 . . . . . . 7 (((ℜ‘𝐴) ∈ ℂ ∧ 2 ∈ ℕ) → (((ℜ‘𝐴)↑2) # 0 ↔ (ℜ‘𝐴) # 0))
3128, 29, 30sylancl 409 . . . . . 6 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) # 0 ↔ (ℜ‘𝐴) # 0))
328recnd 7787 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
33 expap0 10316 . . . . . . 7 (((ℑ‘𝐴) ∈ ℂ ∧ 2 ∈ ℕ) → (((ℑ‘𝐴)↑2) # 0 ↔ (ℑ‘𝐴) # 0))
3432, 29, 33sylancl 409 . . . . . 6 (𝐴 ∈ ℂ → (((ℑ‘𝐴)↑2) # 0 ↔ (ℑ‘𝐴) # 0))
3531, 34orbi12d 782 . . . . 5 (𝐴 ∈ ℂ → ((((ℜ‘𝐴)↑2) # 0 ∨ ((ℑ‘𝐴)↑2) # 0) ↔ ((ℜ‘𝐴) # 0 ∨ (ℑ‘𝐴) # 0)))
3627, 35sylibd 148 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 → ((ℜ‘𝐴) # 0 ∨ (ℑ‘𝐴) # 0)))
37 crap0 8709 . . . . 5 (((ℜ‘𝐴) ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (((ℜ‘𝐴) # 0 ∨ (ℑ‘𝐴) # 0) ↔ ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # 0))
386, 8, 37syl2anc 408 . . . 4 (𝐴 ∈ ℂ → (((ℜ‘𝐴) # 0 ∨ (ℑ‘𝐴) # 0) ↔ ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # 0))
3936, 38sylibd 148 . . 3 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # 0))
40 replim 10624 . . . 4 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4140breq1d 3934 . . 3 (𝐴 ∈ ℂ → (𝐴 # 0 ↔ ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # 0))
4239, 41sylibrd 168 . 2 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 → 𝐴 # 0))
43 absrpclap 10826 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) ∈ ℝ+)
4443rpap0d 9482 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) # 0)
4544ex 114 . 2 (𝐴 ∈ ℂ → (𝐴 # 0 → (abs‘𝐴) # 0))
4642, 45impbid 128 1 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  wcel 1480   class class class wbr 3924  cfv 5118  (class class class)co 5767  cc 7611  cr 7612  0cc0 7613  ici 7615   + caddc 7616   · cmul 7618  cle 7794   # cap 8336  cn 8713  2c2 8764  cexp 10285  cre 10605  cim 10606  csqrt 10761  abscabs 10762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764
This theorem is referenced by:  abs00  10829  absexpzap  10845  ltabs  10852  recvalap  10862  absgt0ap  10864  georeclim  11275  geoisumr  11280  cnopnap  12752
  Copyright terms: Public domain W3C validator