ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abs00ap GIF version

Theorem abs00ap 11292
Description: The absolute value of a number is apart from zero iff the number is apart from zero. (Contributed by Jim Kingdon, 11-Aug-2021.)
Assertion
Ref Expression
abs00ap (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))

Proof of Theorem abs00ap
StepHypRef Expression
1 absval2 11287 . . . . . . . . . 10 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
21breq1d 4053 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # 0))
3 sqrt0 11234 . . . . . . . . . 10 (√‘0) = 0
43breq2i 4051 . . . . . . . . 9 ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘0) ↔ (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # 0)
52, 4bitr4di 198 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘0)))
6 recl 11083 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
76resqcld 10825 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℝ)
8 imcl 11084 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
98resqcld 10825 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℝ)
107, 9readdcld 8084 . . . . . . . . 9 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ)
116sqge0d 10826 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 ≤ ((ℜ‘𝐴)↑2))
128sqge0d 10826 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 ≤ ((ℑ‘𝐴)↑2))
137, 9, 11, 12addge0d 8577 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
14 0red 8055 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ∈ ℝ)
1514leidd 8569 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ 0)
16 sqrt11ap 11268 . . . . . . . . 9 ((((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) ∈ ℝ ∧ 0 ≤ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) ∧ (0 ∈ ℝ ∧ 0 ≤ 0)) → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘0) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # 0))
1710, 13, 14, 15, 16syl22anc 1250 . . . . . . . 8 (𝐴 ∈ ℂ → ((√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) # (√‘0) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # 0))
185, 17bitrd 188 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # 0))
19 00id 8195 . . . . . . . 8 (0 + 0) = 0
2019breq2i 4051 . . . . . . 7 ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (0 + 0) ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # 0)
2118, 20bitr4di 198 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (0 + 0)))
227recnd 8083 . . . . . . 7 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) ∈ ℂ)
239recnd 8083 . . . . . . 7 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) ∈ ℂ)
24 0cnd 8047 . . . . . . 7 (𝐴 ∈ ℂ → 0 ∈ ℂ)
25 addext 8665 . . . . . . 7 (((((ℜ‘𝐴)↑2) ∈ ℂ ∧ ((ℑ‘𝐴)↑2) ∈ ℂ) ∧ (0 ∈ ℂ ∧ 0 ∈ ℂ)) → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (0 + 0) → (((ℜ‘𝐴)↑2) # 0 ∨ ((ℑ‘𝐴)↑2) # 0)))
2622, 23, 24, 24, 25syl22anc 1250 . . . . . 6 (𝐴 ∈ ℂ → ((((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) # (0 + 0) → (((ℜ‘𝐴)↑2) # 0 ∨ ((ℑ‘𝐴)↑2) # 0)))
2721, 26sylbid 150 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 → (((ℜ‘𝐴)↑2) # 0 ∨ ((ℑ‘𝐴)↑2) # 0)))
286recnd 8083 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
29 2nn 9180 . . . . . . 7 2 ∈ ℕ
30 expap0 10695 . . . . . . 7 (((ℜ‘𝐴) ∈ ℂ ∧ 2 ∈ ℕ) → (((ℜ‘𝐴)↑2) # 0 ↔ (ℜ‘𝐴) # 0))
3128, 29, 30sylancl 413 . . . . . 6 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) # 0 ↔ (ℜ‘𝐴) # 0))
328recnd 8083 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
33 expap0 10695 . . . . . . 7 (((ℑ‘𝐴) ∈ ℂ ∧ 2 ∈ ℕ) → (((ℑ‘𝐴)↑2) # 0 ↔ (ℑ‘𝐴) # 0))
3432, 29, 33sylancl 413 . . . . . 6 (𝐴 ∈ ℂ → (((ℑ‘𝐴)↑2) # 0 ↔ (ℑ‘𝐴) # 0))
3531, 34orbi12d 794 . . . . 5 (𝐴 ∈ ℂ → ((((ℜ‘𝐴)↑2) # 0 ∨ ((ℑ‘𝐴)↑2) # 0) ↔ ((ℜ‘𝐴) # 0 ∨ (ℑ‘𝐴) # 0)))
3627, 35sylibd 149 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 → ((ℜ‘𝐴) # 0 ∨ (ℑ‘𝐴) # 0)))
37 crap0 9013 . . . . 5 (((ℜ‘𝐴) ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (((ℜ‘𝐴) # 0 ∨ (ℑ‘𝐴) # 0) ↔ ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # 0))
386, 8, 37syl2anc 411 . . . 4 (𝐴 ∈ ℂ → (((ℜ‘𝐴) # 0 ∨ (ℑ‘𝐴) # 0) ↔ ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # 0))
3936, 38sylibd 149 . . 3 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # 0))
40 replim 11089 . . . 4 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4140breq1d 4053 . . 3 (𝐴 ∈ ℂ → (𝐴 # 0 ↔ ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) # 0))
4239, 41sylibrd 169 . 2 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 → 𝐴 # 0))
43 absrpclap 11291 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) ∈ ℝ+)
4443rpap0d 9806 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (abs‘𝐴) # 0)
4544ex 115 . 2 (𝐴 ∈ ℂ → (𝐴 # 0 → (abs‘𝐴) # 0))
4642, 45impbid 129 1 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  wcel 2175   class class class wbr 4043  cfv 5268  (class class class)co 5934  cc 7905  cr 7906  0cc0 7907  ici 7909   + caddc 7910   · cmul 7912  cle 8090   # cap 8636  cn 9018  2c2 9069  cexp 10664  cre 11070  cim 11071  csqrt 11226  abscabs 11227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-rp 9758  df-seqfrec 10574  df-exp 10665  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229
This theorem is referenced by:  abs00  11294  absexpzap  11310  ltabs  11317  recvalap  11327  absgt0ap  11329  georeclim  11743  geoisumr  11748  cnopnap  15001  ltlenmkv  15873
  Copyright terms: Public domain W3C validator