ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser0 GIF version

Theorem ser0 10750
Description: The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013.) (Revised by Mario Carneiro, 15-Dec-2014.)
Hypothesis
Ref Expression
ser0.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
ser0 (𝑁𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑁) = 0)

Proof of Theorem ser0
Dummy variables 𝑣 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 00id 8283 . . 3 (0 + 0) = 0
21a1i 9 . 2 (𝑁𝑍 → (0 + 0) = 0)
3 ser0.1 . . . 4 𝑍 = (ℤ𝑀)
43eleq2i 2296 . . 3 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
54biimpi 120 . 2 (𝑁𝑍𝑁 ∈ (ℤ𝑀))
6 0cn 8134 . . 3 0 ∈ ℂ
7 elfzuz 10213 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
87, 3eleqtrrdi 2323 . . . 4 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑍)
98adantl 277 . . 3 ((𝑁𝑍𝑘 ∈ (𝑀...𝑁)) → 𝑘𝑍)
10 fvconst2g 5852 . . 3 ((0 ∈ ℂ ∧ 𝑘𝑍) → ((𝑍 × {0})‘𝑘) = 0)
116, 9, 10sylancr 414 . 2 ((𝑁𝑍𝑘 ∈ (𝑀...𝑁)) → ((𝑍 × {0})‘𝑘) = 0)
12 0cnd 8135 . 2 (𝑁𝑍 → 0 ∈ ℂ)
133eleq2i 2296 . . . . . 6 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
1413biimpri 133 . . . . 5 (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍)
1514adantl 277 . . . 4 ((𝑁𝑍𝑘 ∈ (ℤ𝑀)) → 𝑘𝑍)
166, 15, 10sylancr 414 . . 3 ((𝑁𝑍𝑘 ∈ (ℤ𝑀)) → ((𝑍 × {0})‘𝑘) = 0)
1716, 6eqeltrdi 2320 . 2 ((𝑁𝑍𝑘 ∈ (ℤ𝑀)) → ((𝑍 × {0})‘𝑘) ∈ ℂ)
18 addcl 8120 . . 3 ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 + 𝑣) ∈ ℂ)
1918adantl 277 . 2 ((𝑁𝑍 ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 + 𝑣) ∈ ℂ)
202, 5, 11, 12, 17, 19seq3id3 10741 1 (𝑁𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑁) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  {csn 3666   × cxp 4716  cfv 5317  (class class class)co 6000  cc 7993  0cc0 7995   + caddc 7998  cuz 9718  ...cfz 10200  seqcseq 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-seqfrec 10665
This theorem is referenced by:  ser0f  10751  isumz  11895
  Copyright terms: Public domain W3C validator