| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ser0 | GIF version | ||
| Description: The value of the partial sums in a zero-valued infinite series. (Contributed by Mario Carneiro, 31-Aug-2013.) (Revised by Mario Carneiro, 15-Dec-2014.) |
| Ref | Expression |
|---|---|
| ser0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| Ref | Expression |
|---|---|
| ser0 | ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑁) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 00id 8283 | . . 3 ⊢ (0 + 0) = 0 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑁 ∈ 𝑍 → (0 + 0) = 0) |
| 3 | ser0.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | 3 | eleq2i 2296 | . . 3 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | 4 | biimpi 120 | . 2 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 6 | 0cn 8134 | . . 3 ⊢ 0 ∈ ℂ | |
| 7 | elfzuz 10213 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 8 | 7, 3 | eleqtrrdi 2323 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ 𝑍) |
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ 𝑍) |
| 10 | fvconst2g 5852 | . . 3 ⊢ ((0 ∈ ℂ ∧ 𝑘 ∈ 𝑍) → ((𝑍 × {0})‘𝑘) = 0) | |
| 11 | 6, 9, 10 | sylancr 414 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑍 × {0})‘𝑘) = 0) |
| 12 | 0cnd 8135 | . 2 ⊢ (𝑁 ∈ 𝑍 → 0 ∈ ℂ) | |
| 13 | 3 | eleq2i 2296 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
| 14 | 13 | biimpri 133 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ 𝑍) |
| 15 | 14 | adantl 277 | . . . 4 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ 𝑍) |
| 16 | 6, 15, 10 | sylancr 414 | . . 3 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {0})‘𝑘) = 0) |
| 17 | 16, 6 | eqeltrdi 2320 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {0})‘𝑘) ∈ ℂ) |
| 18 | addcl 8120 | . . 3 ⊢ ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 + 𝑣) ∈ ℂ) | |
| 19 | 18 | adantl 277 | . 2 ⊢ ((𝑁 ∈ 𝑍 ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 + 𝑣) ∈ ℂ) |
| 20 | 2, 5, 11, 12, 17, 19 | seq3id3 10741 | 1 ⊢ (𝑁 ∈ 𝑍 → (seq𝑀( + , (𝑍 × {0}))‘𝑁) = 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {csn 3666 × cxp 4716 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 0cc0 7995 + caddc 7998 ℤ≥cuz 9718 ...cfz 10200 seqcseq 10664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 df-seqfrec 10665 |
| This theorem is referenced by: ser0f 10751 isumz 11895 |
| Copyright terms: Public domain | W3C validator |