ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0modprm0 GIF version

Theorem nnnn0modprm0 12202
Description: For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.)
Assertion
Ref Expression
nnnn0modprm0 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Distinct variable groups:   𝑗,𝐼   𝑗,𝑁   𝑃,𝑗

Proof of Theorem nnnn0modprm0
StepHypRef Expression
1 prmnn 12057 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21adantr 274 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℕ)
3 fzo0sn0fzo1 10170 . . . . 5 (𝑃 ∈ ℕ → (0..^𝑃) = ({0} ∪ (1..^𝑃)))
42, 3syl 14 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0..^𝑃) = ({0} ∪ (1..^𝑃)))
54eleq2d 2240 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ (0..^𝑃) ↔ 𝐼 ∈ ({0} ∪ (1..^𝑃))))
6 elun 3268 . . . . 5 (𝐼 ∈ ({0} ∪ (1..^𝑃)) ↔ (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑃)))
7 elsni 3599 . . . . . . 7 (𝐼 ∈ {0} → 𝐼 = 0)
8 lbfzo0 10130 . . . . . . . . . . . 12 (0 ∈ (0..^𝑃) ↔ 𝑃 ∈ ℕ)
91, 8sylibr 133 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 0 ∈ (0..^𝑃))
10 elfzoelz 10096 . . . . . . . . . . . . . . 15 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℤ)
11 zcn 9210 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
12 mul02 8299 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℂ → (0 · 𝑁) = 0)
1312oveq2d 5867 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → (0 + (0 · 𝑁)) = (0 + 0))
14 00id 8053 . . . . . . . . . . . . . . . 16 (0 + 0) = 0
1513, 14eqtrdi 2219 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (0 + (0 · 𝑁)) = 0)
1610, 11, 153syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ (1..^𝑃) → (0 + (0 · 𝑁)) = 0)
1716adantl 275 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0 + (0 · 𝑁)) = 0)
1817oveq1d 5866 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((0 + (0 · 𝑁)) mod 𝑃) = (0 mod 𝑃))
19 nnq 9585 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
201, 19syl 14 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℚ)
211nngt0d 8915 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 0 < 𝑃)
22 q0mod 10304 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℚ ∧ 0 < 𝑃) → (0 mod 𝑃) = 0)
2320, 21, 22syl2anc 409 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (0 mod 𝑃) = 0)
2423adantr 274 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0 mod 𝑃) = 0)
2518, 24eqtrd 2203 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((0 + (0 · 𝑁)) mod 𝑃) = 0)
26 oveq1 5858 . . . . . . . . . . . . . . 15 (𝑗 = 0 → (𝑗 · 𝑁) = (0 · 𝑁))
2726oveq2d 5867 . . . . . . . . . . . . . 14 (𝑗 = 0 → (0 + (𝑗 · 𝑁)) = (0 + (0 · 𝑁)))
2827oveq1d 5866 . . . . . . . . . . . . 13 (𝑗 = 0 → ((0 + (𝑗 · 𝑁)) mod 𝑃) = ((0 + (0 · 𝑁)) mod 𝑃))
2928eqeq1d 2179 . . . . . . . . . . . 12 (𝑗 = 0 → (((0 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (0 · 𝑁)) mod 𝑃) = 0))
3029rspcev 2834 . . . . . . . . . . 11 ((0 ∈ (0..^𝑃) ∧ ((0 + (0 · 𝑁)) mod 𝑃) = 0) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
319, 25, 30syl2an2r 590 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
3231adantl 275 . . . . . . . . 9 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
33 oveq1 5858 . . . . . . . . . . . . 13 (𝐼 = 0 → (𝐼 + (𝑗 · 𝑁)) = (0 + (𝑗 · 𝑁)))
3433oveq1d 5866 . . . . . . . . . . . 12 (𝐼 = 0 → ((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = ((0 + (𝑗 · 𝑁)) mod 𝑃))
3534eqeq1d 2179 . . . . . . . . . . 11 (𝐼 = 0 → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3635adantr 274 . . . . . . . . . 10 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3736rexbidv 2471 . . . . . . . . 9 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → (∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3832, 37mpbird 166 . . . . . . . 8 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
3938ex 114 . . . . . . 7 (𝐼 = 0 → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
407, 39syl 14 . . . . . 6 (𝐼 ∈ {0} → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
41 simpl 108 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℙ)
4241adantl 275 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝑃 ∈ ℙ)
43 simprr 527 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝑁 ∈ (1..^𝑃))
44 simpl 108 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝐼 ∈ (1..^𝑃))
45 modprm0 12201 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
4642, 43, 44, 45syl3anc 1233 . . . . . . 7 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
4746ex 114 . . . . . 6 (𝐼 ∈ (1..^𝑃) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
4840, 47jaoi 711 . . . . 5 ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
496, 48sylbi 120 . . . 4 (𝐼 ∈ ({0} ∪ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
5049com12 30 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ ({0} ∪ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
515, 50sylbid 149 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
52513impia 1195 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  w3a 973   = wceq 1348  wcel 2141  wrex 2449  cun 3119  {csn 3581   class class class wbr 3987  (class class class)co 5851  cc 7765  0cc0 7767  1c1 7768   + caddc 7770   · cmul 7772   < clt 7947  cn 8871  cz 9205  cq 9571  ..^cfzo 10091   mod cmo 10271  cprime 12054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886  ax-caucvg 7887
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-frec 6368  df-1o 6393  df-2o 6394  df-oadd 6397  df-er 6511  df-en 6717  df-dom 6718  df-fin 6719  df-sup 6959  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-n0 9129  df-z 9206  df-uz 9481  df-q 9572  df-rp 9604  df-fz 9959  df-fzo 10092  df-fl 10219  df-mod 10272  df-seqfrec 10395  df-exp 10469  df-ihash 10703  df-cj 10799  df-re 10800  df-im 10801  df-rsqrt 10955  df-abs 10956  df-clim 11235  df-proddc 11507  df-dvds 11743  df-gcd 11891  df-prm 12055  df-phi 12158
This theorem is referenced by:  modprmn0modprm0  12203
  Copyright terms: Public domain W3C validator