ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnn0modprm0 GIF version

Theorem nnnn0modprm0 12146
Description: For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.)
Assertion
Ref Expression
nnnn0modprm0 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Distinct variable groups:   𝑗,𝐼   𝑗,𝑁   𝑃,𝑗

Proof of Theorem nnnn0modprm0
StepHypRef Expression
1 prmnn 12003 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21adantr 274 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℕ)
3 fzo0sn0fzo1 10130 . . . . 5 (𝑃 ∈ ℕ → (0..^𝑃) = ({0} ∪ (1..^𝑃)))
42, 3syl 14 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0..^𝑃) = ({0} ∪ (1..^𝑃)))
54eleq2d 2227 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ (0..^𝑃) ↔ 𝐼 ∈ ({0} ∪ (1..^𝑃))))
6 elun 3249 . . . . 5 (𝐼 ∈ ({0} ∪ (1..^𝑃)) ↔ (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑃)))
7 elsni 3579 . . . . . . 7 (𝐼 ∈ {0} → 𝐼 = 0)
8 lbfzo0 10090 . . . . . . . . . . . 12 (0 ∈ (0..^𝑃) ↔ 𝑃 ∈ ℕ)
91, 8sylibr 133 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 0 ∈ (0..^𝑃))
10 elfzoelz 10056 . . . . . . . . . . . . . . 15 (𝑁 ∈ (1..^𝑃) → 𝑁 ∈ ℤ)
11 zcn 9178 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
12 mul02 8267 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℂ → (0 · 𝑁) = 0)
1312oveq2d 5843 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → (0 + (0 · 𝑁)) = (0 + 0))
14 00id 8021 . . . . . . . . . . . . . . . 16 (0 + 0) = 0
1513, 14eqtrdi 2206 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (0 + (0 · 𝑁)) = 0)
1610, 11, 153syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ (1..^𝑃) → (0 + (0 · 𝑁)) = 0)
1716adantl 275 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0 + (0 · 𝑁)) = 0)
1817oveq1d 5842 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((0 + (0 · 𝑁)) mod 𝑃) = (0 mod 𝑃))
19 nnq 9549 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
201, 19syl 14 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℚ)
211nngt0d 8883 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 0 < 𝑃)
22 q0mod 10264 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℚ ∧ 0 < 𝑃) → (0 mod 𝑃) = 0)
2320, 21, 22syl2anc 409 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (0 mod 𝑃) = 0)
2423adantr 274 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (0 mod 𝑃) = 0)
2518, 24eqtrd 2190 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ((0 + (0 · 𝑁)) mod 𝑃) = 0)
26 oveq1 5834 . . . . . . . . . . . . . . 15 (𝑗 = 0 → (𝑗 · 𝑁) = (0 · 𝑁))
2726oveq2d 5843 . . . . . . . . . . . . . 14 (𝑗 = 0 → (0 + (𝑗 · 𝑁)) = (0 + (0 · 𝑁)))
2827oveq1d 5842 . . . . . . . . . . . . 13 (𝑗 = 0 → ((0 + (𝑗 · 𝑁)) mod 𝑃) = ((0 + (0 · 𝑁)) mod 𝑃))
2928eqeq1d 2166 . . . . . . . . . . . 12 (𝑗 = 0 → (((0 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (0 · 𝑁)) mod 𝑃) = 0))
3029rspcev 2816 . . . . . . . . . . 11 ((0 ∈ (0..^𝑃) ∧ ((0 + (0 · 𝑁)) mod 𝑃) = 0) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
319, 25, 30syl2an2r 585 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
3231adantl 275 . . . . . . . . 9 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0)
33 oveq1 5834 . . . . . . . . . . . . 13 (𝐼 = 0 → (𝐼 + (𝑗 · 𝑁)) = (0 + (𝑗 · 𝑁)))
3433oveq1d 5842 . . . . . . . . . . . 12 (𝐼 = 0 → ((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = ((0 + (𝑗 · 𝑁)) mod 𝑃))
3534eqeq1d 2166 . . . . . . . . . . 11 (𝐼 = 0 → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3635adantr 274 . . . . . . . . . 10 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → (((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3736rexbidv 2458 . . . . . . . . 9 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → (∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0 ↔ ∃𝑗 ∈ (0..^𝑃)((0 + (𝑗 · 𝑁)) mod 𝑃) = 0))
3832, 37mpbird 166 . . . . . . . 8 ((𝐼 = 0 ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
3938ex 114 . . . . . . 7 (𝐼 = 0 → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
407, 39syl 14 . . . . . 6 (𝐼 ∈ {0} → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
41 simpl 108 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → 𝑃 ∈ ℙ)
4241adantl 275 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝑃 ∈ ℙ)
43 simprr 522 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝑁 ∈ (1..^𝑃))
44 simpl 108 . . . . . . . 8 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → 𝐼 ∈ (1..^𝑃))
45 modprm0 12145 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
4642, 43, 44, 45syl3anc 1220 . . . . . . 7 ((𝐼 ∈ (1..^𝑃) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃))) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
4746ex 114 . . . . . 6 (𝐼 ∈ (1..^𝑃) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
4840, 47jaoi 706 . . . . 5 ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
496, 48sylbi 120 . . . 4 (𝐼 ∈ ({0} ∪ (1..^𝑃)) → ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
5049com12 30 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ ({0} ∪ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
515, 50sylbid 149 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
52513impia 1182 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 963   = wceq 1335  wcel 2128  wrex 2436  cun 3100  {csn 3561   class class class wbr 3967  (class class class)co 5827  cc 7733  0cc0 7735  1c1 7736   + caddc 7738   · cmul 7740   < clt 7915  cn 8839  cz 9173  cq 9535  ..^cfzo 10051   mod cmo 10231  cprime 12000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-irdg 6320  df-frec 6341  df-1o 6366  df-2o 6367  df-oadd 6370  df-er 6483  df-en 6689  df-dom 6690  df-fin 6691  df-sup 6931  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-ihash 10662  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-clim 11188  df-proddc 11460  df-dvds 11696  df-gcd 11843  df-prm 12001  df-phi 12102
This theorem is referenced by:  modprmn0modprm0  12147
  Copyright terms: Public domain W3C validator