Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0lt2o | GIF version |
Description: Ordinal zero is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
Ref | Expression |
---|---|
0lt2o | ⊢ ∅ ∈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4109 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | prid1 3682 | . 2 ⊢ ∅ ∈ {∅, 1o} |
3 | df2o3 6398 | . 2 ⊢ 2o = {∅, 1o} | |
4 | 2, 3 | eleqtrri 2242 | 1 ⊢ ∅ ∈ 2o |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ∅c0 3409 {cpr 3577 1oc1o 6377 2oc2o 6378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-nul 3410 df-sn 3582 df-pr 3583 df-suc 4349 df-1o 6384 df-2o 6385 |
This theorem is referenced by: nnnninf 7090 nnnninfeq 7092 fodjuf 7109 mkvprop 7122 unct 12375 bj-charfun 13699 bj-charfundc 13700 012of 13885 pwle2 13888 subctctexmid 13891 0nninf 13894 nninfsellemcl 13901 nninffeq 13910 |
Copyright terms: Public domain | W3C validator |