| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt2o | GIF version | ||
| Description: Ordinal zero is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| 0lt2o | ⊢ ∅ ∈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4170 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | prid1 3738 | . 2 ⊢ ∅ ∈ {∅, 1o} |
| 3 | df2o3 6506 | . 2 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2280 | 1 ⊢ ∅ ∈ 2o |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ∅c0 3459 {cpr 3633 1oc1o 6485 2oc2o 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-nul 4169 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-un 3169 df-nul 3460 df-sn 3638 df-pr 3639 df-suc 4416 df-1o 6492 df-2o 6493 |
| This theorem is referenced by: nnnninf 7210 nnnninfeq 7212 fodjuf 7229 mkvprop 7242 nninfwlporlemd 7256 nninfwlporlem 7257 nninfwlpoimlemg 7259 nninfwlpoimlemginf 7260 2oneel 7350 2omotaplemst 7352 nninfinf 10569 nninfctlemfo 12280 unct 12732 xpsfeq 13095 xpsfval 13098 xpsval 13102 bj-charfun 15607 bj-charfundc 15608 012of 15794 2omap 15796 pwle2 15799 subctctexmid 15801 0nninf 15805 nninfsellemcl 15812 nninffeq 15821 |
| Copyright terms: Public domain | W3C validator |