| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt2o | GIF version | ||
| Description: Ordinal zero is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| 0lt2o | ⊢ ∅ ∈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4161 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | prid1 3729 | . 2 ⊢ ∅ ∈ {∅, 1o} |
| 3 | df2o3 6497 | . 2 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2272 | 1 ⊢ ∅ ∈ 2o |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ∅c0 3451 {cpr 3624 1oc1o 6476 2oc2o 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4160 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3452 df-sn 3629 df-pr 3630 df-suc 4407 df-1o 6483 df-2o 6484 |
| This theorem is referenced by: nnnninf 7201 nnnninfeq 7203 fodjuf 7220 mkvprop 7233 nninfwlporlemd 7247 nninfwlporlem 7248 nninfwlpoimlemg 7250 nninfwlpoimlemginf 7251 2oneel 7341 2omotaplemst 7343 nninfinf 10554 nninfctlemfo 12234 unct 12686 xpsfeq 13049 xpsfval 13052 xpsval 13056 bj-charfun 15561 bj-charfundc 15562 012of 15748 2omap 15750 pwle2 15753 subctctexmid 15755 0nninf 15759 nninfsellemcl 15766 nninffeq 15775 |
| Copyright terms: Public domain | W3C validator |