| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt2o | GIF version | ||
| Description: Ordinal zero is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| 0lt2o | ⊢ ∅ ∈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4210 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | prid1 3772 | . 2 ⊢ ∅ ∈ {∅, 1o} |
| 3 | df2o3 6574 | . 2 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2305 | 1 ⊢ ∅ ∈ 2o |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ∅c0 3491 {cpr 3667 1oc1o 6553 2oc2o 6554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-pr 3673 df-suc 4461 df-1o 6560 df-2o 6561 |
| This theorem is referenced by: en2 6971 nnnninf 7289 nnnninfeq 7291 fodjuf 7308 mkvprop 7321 nninfwlporlemd 7335 nninfwlporlem 7336 nninfwlpoimlemg 7338 nninfwlpoimlemginf 7339 2oneel 7438 2omotaplemst 7440 nninfinf 10660 nninfctlemfo 12556 unct 13008 xpsfeq 13373 xpsfval 13376 xpsval 13380 bj-charfun 16128 bj-charfundc 16129 012of 16316 2omap 16318 pwle2 16323 subctctexmid 16325 0nninf 16329 nninfsellemcl 16336 nninffeq 16345 |
| Copyright terms: Public domain | W3C validator |