| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt2o | GIF version | ||
| Description: Ordinal zero is less than ordinal two. (Contributed by Jim Kingdon, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| 0lt2o | ⊢ ∅ ∈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4161 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | prid1 3729 | . 2 ⊢ ∅ ∈ {∅, 1o} |
| 3 | df2o3 6497 | . 2 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2272 | 1 ⊢ ∅ ∈ 2o |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ∅c0 3451 {cpr 3624 1oc1o 6476 2oc2o 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4160 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3452 df-sn 3629 df-pr 3630 df-suc 4407 df-1o 6483 df-2o 6484 |
| This theorem is referenced by: nnnninf 7201 nnnninfeq 7203 fodjuf 7220 mkvprop 7233 nninfwlporlemd 7247 nninfwlporlem 7248 nninfwlpoimlemg 7250 nninfwlpoimlemginf 7251 2oneel 7339 2omotaplemst 7341 nninfinf 10552 nninfctlemfo 12232 unct 12684 xpsfeq 13047 xpsfval 13050 xpsval 13054 bj-charfun 15537 bj-charfundc 15538 012of 15724 2omap 15726 pwle2 15729 subctctexmid 15731 0nninf 15735 nninfsellemcl 15742 nninffeq 15751 |
| Copyright terms: Public domain | W3C validator |