| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2pi | GIF version | ||
| Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| 1lt2pi | ⊢ 1o <N (1o +N 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6674 | . . . . 5 ⊢ 1o ∈ ω | |
| 2 | nna0 6628 | . . . . 5 ⊢ (1o ∈ ω → (1o +o ∅) = 1o) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1o +o ∅) = 1o |
| 4 | 0lt1o 6594 | . . . . 5 ⊢ ∅ ∈ 1o | |
| 5 | peano1 4686 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 6 | nnaord 6663 | . . . . . 6 ⊢ ((∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω) → (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o))) | |
| 7 | 5, 1, 1, 6 | mp3an 1371 | . . . . 5 ⊢ (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o)) |
| 8 | 4, 7 | mpbi 145 | . . . 4 ⊢ (1o +o ∅) ∈ (1o +o 1o) |
| 9 | 3, 8 | eqeltrri 2303 | . . 3 ⊢ 1o ∈ (1o +o 1o) |
| 10 | 1pi 7510 | . . . 4 ⊢ 1o ∈ N | |
| 11 | addpiord 7511 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) = (1o +o 1o)) | |
| 12 | 10, 10, 11 | mp2an 426 | . . 3 ⊢ (1o +N 1o) = (1o +o 1o) |
| 13 | 9, 12 | eleqtrri 2305 | . 2 ⊢ 1o ∈ (1o +N 1o) |
| 14 | addclpi 7522 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
| 15 | 10, 10, 14 | mp2an 426 | . . 3 ⊢ (1o +N 1o) ∈ N |
| 16 | ltpiord 7514 | . . 3 ⊢ ((1o ∈ N ∧ (1o +N 1o) ∈ N) → (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o))) | |
| 17 | 10, 15, 16 | mp2an 426 | . 2 ⊢ (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o)) |
| 18 | 13, 17 | mpbir 146 | 1 ⊢ 1o <N (1o +N 1o) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∅c0 3491 class class class wbr 4083 ωcom 4682 (class class class)co 6007 1oc1o 6561 +o coa 6565 Ncnpi 7467 +N cpli 7468 <N clti 7470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-1o 6568 df-oadd 6572 df-ni 7499 df-pli 7500 df-lti 7502 |
| This theorem is referenced by: 1lt2nq 7601 |
| Copyright terms: Public domain | W3C validator |