ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt2pi GIF version

Theorem 1lt2pi 7281
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
1lt2pi 1o <N (1o +N 1o)

Proof of Theorem 1lt2pi
StepHypRef Expression
1 1onn 6488 . . . . 5 1o ∈ ω
2 nna0 6442 . . . . 5 (1o ∈ ω → (1o +o ∅) = 1o)
31, 2ax-mp 5 . . . 4 (1o +o ∅) = 1o
4 0lt1o 6408 . . . . 5 ∅ ∈ 1o
5 peano1 4571 . . . . . 6 ∅ ∈ ω
6 nnaord 6477 . . . . . 6 ((∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω) → (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o)))
75, 1, 1, 6mp3an 1327 . . . . 5 (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o))
84, 7mpbi 144 . . . 4 (1o +o ∅) ∈ (1o +o 1o)
93, 8eqeltrri 2240 . . 3 1o ∈ (1o +o 1o)
10 1pi 7256 . . . 4 1oN
11 addpiord 7257 . . . 4 ((1oN ∧ 1oN) → (1o +N 1o) = (1o +o 1o))
1210, 10, 11mp2an 423 . . 3 (1o +N 1o) = (1o +o 1o)
139, 12eleqtrri 2242 . 2 1o ∈ (1o +N 1o)
14 addclpi 7268 . . . 4 ((1oN ∧ 1oN) → (1o +N 1o) ∈ N)
1510, 10, 14mp2an 423 . . 3 (1o +N 1o) ∈ N
16 ltpiord 7260 . . 3 ((1oN ∧ (1o +N 1o) ∈ N) → (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o)))
1710, 15, 16mp2an 423 . 2 (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o))
1813, 17mpbir 145 1 1o <N (1o +N 1o)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343  wcel 2136  c0 3409   class class class wbr 3982  ωcom 4567  (class class class)co 5842  1oc1o 6377   +o coa 6381  Ncnpi 7213   +N cpli 7214   <N clti 7216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-ni 7245  df-pli 7246  df-lti 7248
This theorem is referenced by:  1lt2nq  7347
  Copyright terms: Public domain W3C validator