| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 1lt2pi | GIF version | ||
| Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) | 
| Ref | Expression | 
|---|---|
| 1lt2pi | ⊢ 1o <N (1o +N 1o) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1onn 6578 | . . . . 5 ⊢ 1o ∈ ω | |
| 2 | nna0 6532 | . . . . 5 ⊢ (1o ∈ ω → (1o +o ∅) = 1o) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1o +o ∅) = 1o | 
| 4 | 0lt1o 6498 | . . . . 5 ⊢ ∅ ∈ 1o | |
| 5 | peano1 4630 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 6 | nnaord 6567 | . . . . . 6 ⊢ ((∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω) → (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o))) | |
| 7 | 5, 1, 1, 6 | mp3an 1348 | . . . . 5 ⊢ (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o)) | 
| 8 | 4, 7 | mpbi 145 | . . . 4 ⊢ (1o +o ∅) ∈ (1o +o 1o) | 
| 9 | 3, 8 | eqeltrri 2270 | . . 3 ⊢ 1o ∈ (1o +o 1o) | 
| 10 | 1pi 7382 | . . . 4 ⊢ 1o ∈ N | |
| 11 | addpiord 7383 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) = (1o +o 1o)) | |
| 12 | 10, 10, 11 | mp2an 426 | . . 3 ⊢ (1o +N 1o) = (1o +o 1o) | 
| 13 | 9, 12 | eleqtrri 2272 | . 2 ⊢ 1o ∈ (1o +N 1o) | 
| 14 | addclpi 7394 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
| 15 | 10, 10, 14 | mp2an 426 | . . 3 ⊢ (1o +N 1o) ∈ N | 
| 16 | ltpiord 7386 | . . 3 ⊢ ((1o ∈ N ∧ (1o +N 1o) ∈ N) → (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o))) | |
| 17 | 10, 15, 16 | mp2an 426 | . 2 ⊢ (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o)) | 
| 18 | 13, 17 | mpbir 146 | 1 ⊢ 1o <N (1o +N 1o) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∅c0 3450 class class class wbr 4033 ωcom 4626 (class class class)co 5922 1oc1o 6467 +o coa 6471 Ncnpi 7339 +N cpli 7340 <N clti 7342 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-ni 7371 df-pli 7372 df-lti 7374 | 
| This theorem is referenced by: 1lt2nq 7473 | 
| Copyright terms: Public domain | W3C validator |