ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt2pi GIF version

Theorem 1lt2pi 7495
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
1lt2pi 1o <N (1o +N 1o)

Proof of Theorem 1lt2pi
StepHypRef Expression
1 1onn 6636 . . . . 5 1o ∈ ω
2 nna0 6590 . . . . 5 (1o ∈ ω → (1o +o ∅) = 1o)
31, 2ax-mp 5 . . . 4 (1o +o ∅) = 1o
4 0lt1o 6556 . . . . 5 ∅ ∈ 1o
5 peano1 4663 . . . . . 6 ∅ ∈ ω
6 nnaord 6625 . . . . . 6 ((∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω) → (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o)))
75, 1, 1, 6mp3an 1352 . . . . 5 (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o))
84, 7mpbi 145 . . . 4 (1o +o ∅) ∈ (1o +o 1o)
93, 8eqeltrri 2283 . . 3 1o ∈ (1o +o 1o)
10 1pi 7470 . . . 4 1oN
11 addpiord 7471 . . . 4 ((1oN ∧ 1oN) → (1o +N 1o) = (1o +o 1o))
1210, 10, 11mp2an 426 . . 3 (1o +N 1o) = (1o +o 1o)
139, 12eleqtrri 2285 . 2 1o ∈ (1o +N 1o)
14 addclpi 7482 . . . 4 ((1oN ∧ 1oN) → (1o +N 1o) ∈ N)
1510, 10, 14mp2an 426 . . 3 (1o +N 1o) ∈ N
16 ltpiord 7474 . . 3 ((1oN ∧ (1o +N 1o) ∈ N) → (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o)))
1710, 15, 16mp2an 426 . 2 (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o))
1813, 17mpbir 146 1 1o <N (1o +N 1o)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1375  wcel 2180  c0 3471   class class class wbr 4062  ωcom 4659  (class class class)co 5974  1oc1o 6525   +o coa 6529  Ncnpi 7427   +N cpli 7428   <N clti 7430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-1o 6532  df-oadd 6536  df-ni 7459  df-pli 7460  df-lti 7462
This theorem is referenced by:  1lt2nq  7561
  Copyright terms: Public domain W3C validator