![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1lt2pi | GIF version |
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) |
Ref | Expression |
---|---|
1lt2pi | ⊢ 1o <N (1o +N 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6368 | . . . . 5 ⊢ 1o ∈ ω | |
2 | nna0 6322 | . . . . 5 ⊢ (1o ∈ ω → (1o +o ∅) = 1o) | |
3 | 1, 2 | ax-mp 7 | . . . 4 ⊢ (1o +o ∅) = 1o |
4 | 0lt1o 6289 | . . . . 5 ⊢ ∅ ∈ 1o | |
5 | peano1 4466 | . . . . . 6 ⊢ ∅ ∈ ω | |
6 | nnaord 6357 | . . . . . 6 ⊢ ((∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω) → (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o))) | |
7 | 5, 1, 1, 6 | mp3an 1296 | . . . . 5 ⊢ (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o)) |
8 | 4, 7 | mpbi 144 | . . . 4 ⊢ (1o +o ∅) ∈ (1o +o 1o) |
9 | 3, 8 | eqeltrri 2186 | . . 3 ⊢ 1o ∈ (1o +o 1o) |
10 | 1pi 7065 | . . . 4 ⊢ 1o ∈ N | |
11 | addpiord 7066 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) = (1o +o 1o)) | |
12 | 10, 10, 11 | mp2an 420 | . . 3 ⊢ (1o +N 1o) = (1o +o 1o) |
13 | 9, 12 | eleqtrri 2188 | . 2 ⊢ 1o ∈ (1o +N 1o) |
14 | addclpi 7077 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
15 | 10, 10, 14 | mp2an 420 | . . 3 ⊢ (1o +N 1o) ∈ N |
16 | ltpiord 7069 | . . 3 ⊢ ((1o ∈ N ∧ (1o +N 1o) ∈ N) → (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o))) | |
17 | 10, 15, 16 | mp2an 420 | . 2 ⊢ (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o)) |
18 | 13, 17 | mpbir 145 | 1 ⊢ 1o <N (1o +N 1o) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1312 ∈ wcel 1461 ∅c0 3327 class class class wbr 3893 ωcom 4462 (class class class)co 5726 1oc1o 6258 +o coa 6262 Ncnpi 7022 +N cpli 7023 <N clti 7025 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-iinf 4460 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-eprel 4169 df-id 4173 df-iord 4246 df-on 4248 df-suc 4251 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5990 df-2nd 5991 df-recs 6154 df-irdg 6219 df-1o 6265 df-oadd 6269 df-ni 7054 df-pli 7055 df-lti 7057 |
This theorem is referenced by: 1lt2nq 7156 |
Copyright terms: Public domain | W3C validator |