ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1lt2pi GIF version

Theorem 1lt2pi 7090
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.)
Assertion
Ref Expression
1lt2pi 1o <N (1o +N 1o)

Proof of Theorem 1lt2pi
StepHypRef Expression
1 1onn 6368 . . . . 5 1o ∈ ω
2 nna0 6322 . . . . 5 (1o ∈ ω → (1o +o ∅) = 1o)
31, 2ax-mp 7 . . . 4 (1o +o ∅) = 1o
4 0lt1o 6289 . . . . 5 ∅ ∈ 1o
5 peano1 4466 . . . . . 6 ∅ ∈ ω
6 nnaord 6357 . . . . . 6 ((∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω) → (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o)))
75, 1, 1, 6mp3an 1296 . . . . 5 (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o))
84, 7mpbi 144 . . . 4 (1o +o ∅) ∈ (1o +o 1o)
93, 8eqeltrri 2186 . . 3 1o ∈ (1o +o 1o)
10 1pi 7065 . . . 4 1oN
11 addpiord 7066 . . . 4 ((1oN ∧ 1oN) → (1o +N 1o) = (1o +o 1o))
1210, 10, 11mp2an 420 . . 3 (1o +N 1o) = (1o +o 1o)
139, 12eleqtrri 2188 . 2 1o ∈ (1o +N 1o)
14 addclpi 7077 . . . 4 ((1oN ∧ 1oN) → (1o +N 1o) ∈ N)
1510, 10, 14mp2an 420 . . 3 (1o +N 1o) ∈ N
16 ltpiord 7069 . . 3 ((1oN ∧ (1o +N 1o) ∈ N) → (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o)))
1710, 15, 16mp2an 420 . 2 (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o))
1813, 17mpbir 145 1 1o <N (1o +N 1o)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1312  wcel 1461  c0 3327   class class class wbr 3893  ωcom 4462  (class class class)co 5726  1oc1o 6258   +o coa 6262  Ncnpi 7022   +N cpli 7023   <N clti 7025
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-eprel 4169  df-id 4173  df-iord 4246  df-on 4248  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-irdg 6219  df-1o 6265  df-oadd 6269  df-ni 7054  df-pli 7055  df-lti 7057
This theorem is referenced by:  1lt2nq  7156
  Copyright terms: Public domain W3C validator