Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1lt2pi | GIF version |
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) |
Ref | Expression |
---|---|
1lt2pi | ⊢ 1o <N (1o +N 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6511 | . . . . 5 ⊢ 1o ∈ ω | |
2 | nna0 6465 | . . . . 5 ⊢ (1o ∈ ω → (1o +o ∅) = 1o) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1o +o ∅) = 1o |
4 | 0lt1o 6431 | . . . . 5 ⊢ ∅ ∈ 1o | |
5 | peano1 4587 | . . . . . 6 ⊢ ∅ ∈ ω | |
6 | nnaord 6500 | . . . . . 6 ⊢ ((∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω) → (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o))) | |
7 | 5, 1, 1, 6 | mp3an 1337 | . . . . 5 ⊢ (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o)) |
8 | 4, 7 | mpbi 145 | . . . 4 ⊢ (1o +o ∅) ∈ (1o +o 1o) |
9 | 3, 8 | eqeltrri 2249 | . . 3 ⊢ 1o ∈ (1o +o 1o) |
10 | 1pi 7289 | . . . 4 ⊢ 1o ∈ N | |
11 | addpiord 7290 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) = (1o +o 1o)) | |
12 | 10, 10, 11 | mp2an 426 | . . 3 ⊢ (1o +N 1o) = (1o +o 1o) |
13 | 9, 12 | eleqtrri 2251 | . 2 ⊢ 1o ∈ (1o +N 1o) |
14 | addclpi 7301 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
15 | 10, 10, 14 | mp2an 426 | . . 3 ⊢ (1o +N 1o) ∈ N |
16 | ltpiord 7293 | . . 3 ⊢ ((1o ∈ N ∧ (1o +N 1o) ∈ N) → (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o))) | |
17 | 10, 15, 16 | mp2an 426 | . 2 ⊢ (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o)) |
18 | 13, 17 | mpbir 146 | 1 ⊢ 1o <N (1o +N 1o) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∈ wcel 2146 ∅c0 3420 class class class wbr 3998 ωcom 4583 (class class class)co 5865 1oc1o 6400 +o coa 6404 Ncnpi 7246 +N cpli 7247 <N clti 7249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-eprel 4283 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-1o 6407 df-oadd 6411 df-ni 7278 df-pli 7279 df-lti 7281 |
This theorem is referenced by: 1lt2nq 7380 |
Copyright terms: Public domain | W3C validator |