| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1lt2pi | GIF version | ||
| Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| 1lt2pi | ⊢ 1o <N (1o +N 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6613 | . . . . 5 ⊢ 1o ∈ ω | |
| 2 | nna0 6567 | . . . . 5 ⊢ (1o ∈ ω → (1o +o ∅) = 1o) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (1o +o ∅) = 1o |
| 4 | 0lt1o 6533 | . . . . 5 ⊢ ∅ ∈ 1o | |
| 5 | peano1 4646 | . . . . . 6 ⊢ ∅ ∈ ω | |
| 6 | nnaord 6602 | . . . . . 6 ⊢ ((∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω) → (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o))) | |
| 7 | 5, 1, 1, 6 | mp3an 1350 | . . . . 5 ⊢ (∅ ∈ 1o ↔ (1o +o ∅) ∈ (1o +o 1o)) |
| 8 | 4, 7 | mpbi 145 | . . . 4 ⊢ (1o +o ∅) ∈ (1o +o 1o) |
| 9 | 3, 8 | eqeltrri 2280 | . . 3 ⊢ 1o ∈ (1o +o 1o) |
| 10 | 1pi 7435 | . . . 4 ⊢ 1o ∈ N | |
| 11 | addpiord 7436 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) = (1o +o 1o)) | |
| 12 | 10, 10, 11 | mp2an 426 | . . 3 ⊢ (1o +N 1o) = (1o +o 1o) |
| 13 | 9, 12 | eleqtrri 2282 | . 2 ⊢ 1o ∈ (1o +N 1o) |
| 14 | addclpi 7447 | . . . 4 ⊢ ((1o ∈ N ∧ 1o ∈ N) → (1o +N 1o) ∈ N) | |
| 15 | 10, 10, 14 | mp2an 426 | . . 3 ⊢ (1o +N 1o) ∈ N |
| 16 | ltpiord 7439 | . . 3 ⊢ ((1o ∈ N ∧ (1o +N 1o) ∈ N) → (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o))) | |
| 17 | 10, 15, 16 | mp2an 426 | . 2 ⊢ (1o <N (1o +N 1o) ↔ 1o ∈ (1o +N 1o)) |
| 18 | 13, 17 | mpbir 146 | 1 ⊢ 1o <N (1o +N 1o) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∅c0 3461 class class class wbr 4047 ωcom 4642 (class class class)co 5951 1oc1o 6502 +o coa 6506 Ncnpi 7392 +N cpli 7393 <N clti 7395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-eprel 4340 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-1o 6509 df-oadd 6513 df-ni 7424 df-pli 7425 df-lti 7427 |
| This theorem is referenced by: 1lt2nq 7526 |
| Copyright terms: Public domain | W3C validator |