| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1domsn | GIF version | ||
| Description: A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.) |
| Ref | Expression |
|---|---|
| 1domsn | ⊢ {𝐴} ≼ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1o 6539 | . . . 4 ⊢ ∅ ∈ 1o | |
| 2 | 1 | rgenw 2562 | . . 3 ⊢ ∀𝑥 ∈ {𝐴}∅ ∈ 1o |
| 3 | elsni 3656 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 4 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝐴) |
| 5 | elsni 3656 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) | |
| 6 | 5 | adantl 277 | . . . . . 6 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑦 = 𝐴) |
| 7 | 4, 6 | eqtr4d 2242 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝑦) |
| 8 | 7 | a1d 22 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (∅ = ∅ → 𝑥 = 𝑦)) |
| 9 | 8 | rgen2a 2561 | . . 3 ⊢ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (∅ = ∅ → 𝑥 = 𝑦) |
| 10 | eqid 2206 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ ∅) = (𝑥 ∈ {𝐴} ↦ ∅) | |
| 11 | eqidd 2207 | . . . 4 ⊢ (𝑥 = 𝑦 → ∅ = ∅) | |
| 12 | 10, 11 | f1mpt 5853 | . . 3 ⊢ ((𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o ↔ (∀𝑥 ∈ {𝐴}∅ ∈ 1o ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (∅ = ∅ → 𝑥 = 𝑦))) |
| 13 | 2, 9, 12 | mpbir2an 945 | . 2 ⊢ (𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o |
| 14 | 1oex 6523 | . . 3 ⊢ 1o ∈ V | |
| 15 | 14 | f1dom 6864 | . 2 ⊢ ((𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o → {𝐴} ≼ 1o) |
| 16 | 13, 15 | ax-mp 5 | 1 ⊢ {𝐴} ≼ 1o |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∅c0 3464 {csn 3638 class class class wbr 4051 ↦ cmpt 4113 –1-1→wf1 5277 1oc1o 6508 ≼ cdom 6839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-1o 6515 df-dom 6842 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |