| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1domsn | GIF version | ||
| Description: A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.) |
| Ref | Expression |
|---|---|
| 1domsn | ⊢ {𝐴} ≼ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1o 6584 | . . . 4 ⊢ ∅ ∈ 1o | |
| 2 | 1 | rgenw 2585 | . . 3 ⊢ ∀𝑥 ∈ {𝐴}∅ ∈ 1o |
| 3 | elsni 3684 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 4 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝐴) |
| 5 | elsni 3684 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) | |
| 6 | 5 | adantl 277 | . . . . . 6 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑦 = 𝐴) |
| 7 | 4, 6 | eqtr4d 2265 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝑦) |
| 8 | 7 | a1d 22 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (∅ = ∅ → 𝑥 = 𝑦)) |
| 9 | 8 | rgen2a 2584 | . . 3 ⊢ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (∅ = ∅ → 𝑥 = 𝑦) |
| 10 | eqid 2229 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ ∅) = (𝑥 ∈ {𝐴} ↦ ∅) | |
| 11 | eqidd 2230 | . . . 4 ⊢ (𝑥 = 𝑦 → ∅ = ∅) | |
| 12 | 10, 11 | f1mpt 5894 | . . 3 ⊢ ((𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o ↔ (∀𝑥 ∈ {𝐴}∅ ∈ 1o ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (∅ = ∅ → 𝑥 = 𝑦))) |
| 13 | 2, 9, 12 | mpbir2an 948 | . 2 ⊢ (𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o |
| 14 | 1oex 6568 | . . 3 ⊢ 1o ∈ V | |
| 15 | 14 | f1dom 6909 | . 2 ⊢ ((𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o → {𝐴} ≼ 1o) |
| 16 | 13, 15 | ax-mp 5 | 1 ⊢ {𝐴} ≼ 1o |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∅c0 3491 {csn 3666 class class class wbr 4082 ↦ cmpt 4144 –1-1→wf1 5314 1oc1o 6553 ≼ cdom 6884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1o 6560 df-dom 6887 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |