![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1domsn | GIF version |
Description: A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.) |
Ref | Expression |
---|---|
1domsn | ⊢ {𝐴} ≼ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt1o 6443 | . . . 4 ⊢ ∅ ∈ 1o | |
2 | 1 | rgenw 2532 | . . 3 ⊢ ∀𝑥 ∈ {𝐴}∅ ∈ 1o |
3 | elsni 3612 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
4 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝐴) |
5 | elsni 3612 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) | |
6 | 5 | adantl 277 | . . . . . 6 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑦 = 𝐴) |
7 | 4, 6 | eqtr4d 2213 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝑦) |
8 | 7 | a1d 22 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (∅ = ∅ → 𝑥 = 𝑦)) |
9 | 8 | rgen2a 2531 | . . 3 ⊢ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (∅ = ∅ → 𝑥 = 𝑦) |
10 | eqid 2177 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ ∅) = (𝑥 ∈ {𝐴} ↦ ∅) | |
11 | eqidd 2178 | . . . 4 ⊢ (𝑥 = 𝑦 → ∅ = ∅) | |
12 | 10, 11 | f1mpt 5774 | . . 3 ⊢ ((𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o ↔ (∀𝑥 ∈ {𝐴}∅ ∈ 1o ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (∅ = ∅ → 𝑥 = 𝑦))) |
13 | 2, 9, 12 | mpbir2an 942 | . 2 ⊢ (𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o |
14 | 1oex 6427 | . . 3 ⊢ 1o ∈ V | |
15 | 14 | f1dom 6762 | . 2 ⊢ ((𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o → {𝐴} ≼ 1o) |
16 | 13, 15 | ax-mp 5 | 1 ⊢ {𝐴} ≼ 1o |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ∅c0 3424 {csn 3594 class class class wbr 4005 ↦ cmpt 4066 –1-1→wf1 5215 1oc1o 6412 ≼ cdom 6741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-1o 6419 df-dom 6744 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |