![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1domsn | GIF version |
Description: A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.) |
Ref | Expression |
---|---|
1domsn | ⊢ {𝐴} ≼ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt1o 6495 | . . . 4 ⊢ ∅ ∈ 1o | |
2 | 1 | rgenw 2549 | . . 3 ⊢ ∀𝑥 ∈ {𝐴}∅ ∈ 1o |
3 | elsni 3637 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
4 | 3 | adantr 276 | . . . . . 6 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝐴) |
5 | elsni 3637 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) | |
6 | 5 | adantl 277 | . . . . . 6 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑦 = 𝐴) |
7 | 4, 6 | eqtr4d 2229 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝑦) |
8 | 7 | a1d 22 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (∅ = ∅ → 𝑥 = 𝑦)) |
9 | 8 | rgen2a 2548 | . . 3 ⊢ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (∅ = ∅ → 𝑥 = 𝑦) |
10 | eqid 2193 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ ∅) = (𝑥 ∈ {𝐴} ↦ ∅) | |
11 | eqidd 2194 | . . . 4 ⊢ (𝑥 = 𝑦 → ∅ = ∅) | |
12 | 10, 11 | f1mpt 5815 | . . 3 ⊢ ((𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o ↔ (∀𝑥 ∈ {𝐴}∅ ∈ 1o ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (∅ = ∅ → 𝑥 = 𝑦))) |
13 | 2, 9, 12 | mpbir2an 944 | . 2 ⊢ (𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o |
14 | 1oex 6479 | . . 3 ⊢ 1o ∈ V | |
15 | 14 | f1dom 6816 | . 2 ⊢ ((𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o → {𝐴} ≼ 1o) |
16 | 13, 15 | ax-mp 5 | 1 ⊢ {𝐴} ≼ 1o |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∅c0 3447 {csn 3619 class class class wbr 4030 ↦ cmpt 4091 –1-1→wf1 5252 1oc1o 6464 ≼ cdom 6795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-1o 6471 df-dom 6798 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |