Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1domsn | GIF version |
Description: A singleton (whether of a set or a proper class) is dominated by one. (Contributed by Jim Kingdon, 1-Mar-2022.) |
Ref | Expression |
---|---|
1domsn | ⊢ {𝐴} ≼ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt1o 6384 | . . . 4 ⊢ ∅ ∈ 1o | |
2 | 1 | rgenw 2512 | . . 3 ⊢ ∀𝑥 ∈ {𝐴}∅ ∈ 1o |
3 | elsni 3578 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
4 | 3 | adantr 274 | . . . . . 6 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝐴) |
5 | elsni 3578 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) | |
6 | 5 | adantl 275 | . . . . . 6 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑦 = 𝐴) |
7 | 4, 6 | eqtr4d 2193 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝑦) |
8 | 7 | a1d 22 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (∅ = ∅ → 𝑥 = 𝑦)) |
9 | 8 | rgen2a 2511 | . . 3 ⊢ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (∅ = ∅ → 𝑥 = 𝑦) |
10 | eqid 2157 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ ∅) = (𝑥 ∈ {𝐴} ↦ ∅) | |
11 | eqidd 2158 | . . . 4 ⊢ (𝑥 = 𝑦 → ∅ = ∅) | |
12 | 10, 11 | f1mpt 5718 | . . 3 ⊢ ((𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o ↔ (∀𝑥 ∈ {𝐴}∅ ∈ 1o ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (∅ = ∅ → 𝑥 = 𝑦))) |
13 | 2, 9, 12 | mpbir2an 927 | . 2 ⊢ (𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o |
14 | 1oex 6368 | . . 3 ⊢ 1o ∈ V | |
15 | 14 | f1dom 6702 | . 2 ⊢ ((𝑥 ∈ {𝐴} ↦ ∅):{𝐴}–1-1→1o → {𝐴} ≼ 1o) |
16 | 13, 15 | ax-mp 5 | 1 ⊢ {𝐴} ≼ 1o |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ∀wral 2435 ∅c0 3394 {csn 3560 class class class wbr 3965 ↦ cmpt 4025 –1-1→wf1 5166 1oc1o 6353 ≼ cdom 6681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-1o 6360 df-dom 6684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |