| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2oex | GIF version | ||
| Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| 2oex | ⊢ 2o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 6583 | . 2 ⊢ 2o = {∅, 1o} | |
| 2 | 0ex 4211 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 1oex 6576 | . . 3 ⊢ 1o ∈ V | |
| 4 | prexg 4295 | . . 3 ⊢ ((∅ ∈ V ∧ 1o ∈ V) → {∅, 1o} ∈ V) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ {∅, 1o} ∈ V |
| 6 | 1, 5 | eqeltri 2302 | 1 ⊢ 2o ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ∅c0 3491 {cpr 3667 1oc1o 6561 2oc2o 6562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-1o 6568 df-2o 6569 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |