![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1oex | GIF version |
Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
1oex | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6441 | . 2 ⊢ 1o ∈ On | |
2 | 1 | elexi 2763 | 1 ⊢ 1o ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2159 Vcvv 2751 Oncon0 4377 1oc1o 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-nul 4143 ax-pow 4188 ax-pr 4223 ax-un 4447 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ral 2472 df-rex 2473 df-v 2753 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-pw 3591 df-sn 3612 df-pr 3613 df-uni 3824 df-tr 4116 df-iord 4380 df-on 4382 df-suc 4385 df-1o 6434 |
This theorem is referenced by: 1lt2o 6460 map1 6829 1domsn 6836 pw1fin 6927 djuexb 7060 djurclr 7066 djurcl 7068 djurf1or 7073 djurf1o 7075 djuss 7086 infnninf 7139 infnninfOLD 7140 ismkvnex 7170 dju1p1e2 7213 exmidfodomrlemr 7218 exmidfodomrlemrALT 7219 djucomen 7232 djuassen 7233 pw1on 7242 pw1nel3 7247 sucpw1ne3 7248 sucpw1nel3 7249 indpi 7358 prarloclemlt 7509 fxnn0nninf 10455 inftonninf 10458 enctlem 12450 fnpr2ob 12781 xpsfrnel 12785 djurclALT 14937 fmelpw1o 14941 bj-charfun 14942 pwle2 15132 pw1nct 15136 |
Copyright terms: Public domain | W3C validator |