| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1oex | GIF version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| 1oex | ⊢ 1o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6481 | . 2 ⊢ 1o ∈ On | |
| 2 | 1 | elexi 2775 | 1 ⊢ 1o ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 Oncon0 4398 1oc1o 6467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-1o 6474 |
| This theorem is referenced by: 1lt2o 6500 map1 6871 1domsn 6878 pw1fin 6971 exmidpw2en 6973 djuexb 7110 djurclr 7116 djurcl 7118 djurf1or 7123 djurf1o 7125 djuss 7136 infnninf 7190 infnninfOLD 7191 ismkvnex 7221 dju1p1e2 7264 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 djucomen 7283 djuassen 7284 pw1on 7293 pw1nel3 7298 sucpw1ne3 7299 sucpw1nel3 7300 indpi 7409 prarloclemlt 7560 fxnn0nninf 10531 inftonninf 10534 nninfctlemfo 12207 nninfct 12208 enctlem 12649 fnpr2ob 12983 xpsfrnel 12987 djurclALT 15448 fmelpw1o 15452 bj-charfun 15453 pwle2 15643 pw1nct 15647 |
| Copyright terms: Public domain | W3C validator |