| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1oex | GIF version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| 1oex | ⊢ 1o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6482 | . 2 ⊢ 1o ∈ On | |
| 2 | 1 | elexi 2775 | 1 ⊢ 1o ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 Oncon0 4399 1oc1o 6468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-1o 6475 |
| This theorem is referenced by: 1lt2o 6501 map1 6872 1domsn 6879 pw1fin 6972 exmidpw2en 6974 djuexb 7111 djurclr 7117 djurcl 7119 djurf1or 7124 djurf1o 7126 djuss 7137 infnninf 7191 infnninfOLD 7192 ismkvnex 7222 dju1p1e2 7266 exmidfodomrlemr 7271 exmidfodomrlemrALT 7272 djucomen 7285 djuassen 7286 pw1on 7295 pw1nel3 7300 sucpw1ne3 7301 sucpw1nel3 7302 indpi 7411 prarloclemlt 7562 fxnn0nninf 10533 inftonninf 10536 nninfctlemfo 12217 nninfct 12218 enctlem 12659 fnpr2ob 12993 xpsfrnel 12997 djurclALT 15458 fmelpw1o 15462 bj-charfun 15463 pwle2 15653 pw1nct 15657 |
| Copyright terms: Public domain | W3C validator |