| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1oex | GIF version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| 1oex | ⊢ 1o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6527 | . 2 ⊢ 1o ∈ On | |
| 2 | 1 | elexi 2786 | 1 ⊢ 1o ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 Oncon0 4423 1oc1o 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3860 df-tr 4154 df-iord 4426 df-on 4428 df-suc 4431 df-1o 6520 |
| This theorem is referenced by: 1lt2o 6546 map1 6923 rex2dom 6929 1domsn 6934 pw1fin 7028 exmidpw2en 7030 djuexb 7167 djurclr 7173 djurcl 7175 djurf1or 7180 djurf1o 7182 djuss 7193 infnninf 7247 infnninfOLD 7248 ismkvnex 7278 pr2cv1 7324 dju1p1e2 7331 exmidfodomrlemr 7336 exmidfodomrlemrALT 7337 djucomen 7354 djuassen 7355 pw1on 7367 pw1nel3 7372 sucpw1ne3 7373 sucpw1nel3 7374 fmelpw1o 7388 indpi 7485 prarloclemlt 7636 fxnn0nninf 10616 inftonninf 10619 nninfctlemfo 12446 nninfct 12447 enctlem 12888 fnpr2ob 13257 xpsfrnel 13261 djurclALT 15908 bj-charfun 15912 pw1map 16104 pw1mapen 16105 pwle2 16107 pw1nct 16112 nnnninfex 16131 nninfnfiinf 16132 |
| Copyright terms: Public domain | W3C validator |