| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1oex | GIF version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| 1oex | ⊢ 1o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6567 | . 2 ⊢ 1o ∈ On | |
| 2 | 1 | elexi 2812 | 1 ⊢ 1o ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 Oncon0 4453 1oc1o 6553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 df-1o 6560 |
| This theorem is referenced by: 1lt2o 6586 map1 6963 rex2dom 6969 1domsn 6974 pw1fin 7068 exmidpw2en 7070 djuexb 7207 djurclr 7213 djurcl 7215 djurf1or 7220 djurf1o 7222 djuss 7233 infnninf 7287 infnninfOLD 7288 ismkvnex 7318 pr2cv1 7364 dju1p1e2 7371 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 djucomen 7394 djuassen 7395 pw1on 7407 pw1nel3 7412 sucpw1ne3 7413 sucpw1nel3 7414 fmelpw1o 7428 indpi 7525 prarloclemlt 7676 fxnn0nninf 10656 inftonninf 10659 nninfctlemfo 12556 nninfct 12557 enctlem 12998 fnpr2ob 13368 xpsfrnel 13372 djurclALT 16124 bj-charfun 16128 pw1map 16320 pw1mapen 16321 pwle2 16323 pw1nct 16328 nnnninfex 16347 nninfnfiinf 16348 |
| Copyright terms: Public domain | W3C validator |