Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1oex | GIF version |
Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
1oex | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6391 | . 2 ⊢ 1o ∈ On | |
2 | 1 | elexi 2738 | 1 ⊢ 1o ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 Oncon0 4341 1oc1o 6377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-1o 6384 |
This theorem is referenced by: 1lt2o 6410 map1 6778 1domsn 6785 pw1fin 6876 djuexb 7009 djurclr 7015 djurcl 7017 djurf1or 7022 djurf1o 7024 djuss 7035 infnninf 7088 infnninfOLD 7089 ismkvnex 7119 dju1p1e2 7153 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 djucomen 7172 djuassen 7173 pw1on 7182 pw1nel3 7187 sucpw1ne3 7188 sucpw1nel3 7189 indpi 7283 prarloclemlt 7434 fxnn0nninf 10373 inftonninf 10376 enctlem 12365 djurclALT 13683 fmelpw1o 13688 bj-charfun 13689 pwle2 13878 pw1nct 13883 |
Copyright terms: Public domain | W3C validator |