Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1oex | GIF version |
Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
1oex | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6402 | . 2 ⊢ 1o ∈ On | |
2 | 1 | elexi 2742 | 1 ⊢ 1o ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 Oncon0 4348 1oc1o 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 df-1o 6395 |
This theorem is referenced by: 1lt2o 6421 map1 6790 1domsn 6797 pw1fin 6888 djuexb 7021 djurclr 7027 djurcl 7029 djurf1or 7034 djurf1o 7036 djuss 7047 infnninf 7100 infnninfOLD 7101 ismkvnex 7131 dju1p1e2 7174 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 djucomen 7193 djuassen 7194 pw1on 7203 pw1nel3 7208 sucpw1ne3 7209 sucpw1nel3 7210 indpi 7304 prarloclemlt 7455 fxnn0nninf 10394 inftonninf 10397 enctlem 12387 djurclALT 13837 fmelpw1o 13841 bj-charfun 13842 pwle2 14031 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |