| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1oex | GIF version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| 1oex | ⊢ 1o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6508 | . 2 ⊢ 1o ∈ On | |
| 2 | 1 | elexi 2783 | 1 ⊢ 1o ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 Oncon0 4409 1oc1o 6494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-tr 4142 df-iord 4412 df-on 4414 df-suc 4417 df-1o 6501 |
| This theorem is referenced by: 1lt2o 6527 map1 6903 rex2dom 6909 1domsn 6913 pw1fin 7006 exmidpw2en 7008 djuexb 7145 djurclr 7151 djurcl 7153 djurf1or 7158 djurf1o 7160 djuss 7171 infnninf 7225 infnninfOLD 7226 ismkvnex 7256 dju1p1e2 7304 exmidfodomrlemr 7309 exmidfodomrlemrALT 7310 djucomen 7327 djuassen 7328 pw1on 7337 pw1nel3 7342 sucpw1ne3 7343 sucpw1nel3 7344 indpi 7454 prarloclemlt 7605 fxnn0nninf 10582 inftonninf 10585 nninfctlemfo 12303 nninfct 12304 enctlem 12745 fnpr2ob 13114 xpsfrnel 13118 djurclALT 15671 fmelpw1o 15675 bj-charfun 15676 pwle2 15868 pw1nct 15873 nnnninfex 15892 nninfnfiinf 15893 |
| Copyright terms: Public domain | W3C validator |