| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-gcd | GIF version | ||
| Description: Example for df-gcd 12483. (Contributed by AV, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-gcd | ⊢ (-6 gcd 9) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 9284 | . . . 4 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnzi 9475 | . . 3 ⊢ 6 ∈ ℤ |
| 3 | 9nn 9287 | . . . 4 ⊢ 9 ∈ ℕ | |
| 4 | 3 | nnzi 9475 | . . 3 ⊢ 9 ∈ ℤ |
| 5 | neggcd 12512 | . . 3 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
| 6 | 2, 4, 5 | mp2an 426 | . 2 ⊢ (-6 gcd 9) = (6 gcd 9) |
| 7 | 6cn 9200 | . . . . . 6 ⊢ 6 ∈ ℂ | |
| 8 | 3cn 9193 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 9 | 6p3e9 9269 | . . . . . 6 ⊢ (6 + 3) = 9 | |
| 10 | 7, 8, 9 | addcomli 8299 | . . . . 5 ⊢ (3 + 6) = 9 |
| 11 | 10 | eqcomi 2233 | . . . 4 ⊢ 9 = (3 + 6) |
| 12 | 11 | oveq2i 6018 | . . 3 ⊢ (6 gcd 9) = (6 gcd (3 + 6)) |
| 13 | 3z 9483 | . . . . . 6 ⊢ 3 ∈ ℤ | |
| 14 | gcdcom 12502 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (3 gcd 6)) | |
| 15 | 2, 13, 14 | mp2an 426 | . . . . 5 ⊢ (6 gcd 3) = (3 gcd 6) |
| 16 | 3p3e6 9261 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
| 17 | 16 | eqcomi 2233 | . . . . . 6 ⊢ 6 = (3 + 3) |
| 18 | 17 | oveq2i 6018 | . . . . 5 ⊢ (3 gcd 6) = (3 gcd (3 + 3)) |
| 19 | 15, 18 | eqtri 2250 | . . . 4 ⊢ (6 gcd 3) = (3 gcd (3 + 3)) |
| 20 | gcdadd 12514 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (6 gcd (3 + 6))) | |
| 21 | 2, 13, 20 | mp2an 426 | . . . 4 ⊢ (6 gcd 3) = (6 gcd (3 + 6)) |
| 22 | gcdid 12515 | . . . . . 6 ⊢ (3 ∈ ℤ → (3 gcd 3) = (abs‘3)) | |
| 23 | 13, 22 | ax-mp 5 | . . . . 5 ⊢ (3 gcd 3) = (abs‘3) |
| 24 | gcdadd 12514 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 3 ∈ ℤ) → (3 gcd 3) = (3 gcd (3 + 3))) | |
| 25 | 13, 13, 24 | mp2an 426 | . . . . 5 ⊢ (3 gcd 3) = (3 gcd (3 + 3)) |
| 26 | 3re 9192 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 27 | 0re 8154 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 28 | 3pos 9212 | . . . . . . 7 ⊢ 0 < 3 | |
| 29 | 27, 26, 28 | ltleii 8257 | . . . . . 6 ⊢ 0 ≤ 3 |
| 30 | absid 11590 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3) | |
| 31 | 26, 29, 30 | mp2an 426 | . . . . 5 ⊢ (abs‘3) = 3 |
| 32 | 23, 25, 31 | 3eqtr3i 2258 | . . . 4 ⊢ (3 gcd (3 + 3)) = 3 |
| 33 | 19, 21, 32 | 3eqtr3i 2258 | . . 3 ⊢ (6 gcd (3 + 6)) = 3 |
| 34 | 12, 33 | eqtri 2250 | . 2 ⊢ (6 gcd 9) = 3 |
| 35 | 6, 34 | eqtri 2250 | 1 ⊢ (-6 gcd 9) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 ℝcr 8006 0cc0 8007 + caddc 8010 ≤ cle 8190 -cneg 8326 3c3 9170 6c6 9173 9c9 9176 ℤcz 9454 abscabs 11516 gcd cgcd 12482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-sup 7159 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-dvds 12307 df-gcd 12483 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |