![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ex-gcd | GIF version |
Description: Example for df-gcd 12080. (Contributed by AV, 5-Sep-2021.) |
Ref | Expression |
---|---|
ex-gcd | ⊢ (-6 gcd 9) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 9147 | . . . 4 ⊢ 6 ∈ ℕ | |
2 | 1 | nnzi 9338 | . . 3 ⊢ 6 ∈ ℤ |
3 | 9nn 9150 | . . . 4 ⊢ 9 ∈ ℕ | |
4 | 3 | nnzi 9338 | . . 3 ⊢ 9 ∈ ℤ |
5 | neggcd 12120 | . . 3 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
6 | 2, 4, 5 | mp2an 426 | . 2 ⊢ (-6 gcd 9) = (6 gcd 9) |
7 | 6cn 9064 | . . . . . 6 ⊢ 6 ∈ ℂ | |
8 | 3cn 9057 | . . . . . 6 ⊢ 3 ∈ ℂ | |
9 | 6p3e9 9132 | . . . . . 6 ⊢ (6 + 3) = 9 | |
10 | 7, 8, 9 | addcomli 8164 | . . . . 5 ⊢ (3 + 6) = 9 |
11 | 10 | eqcomi 2197 | . . . 4 ⊢ 9 = (3 + 6) |
12 | 11 | oveq2i 5929 | . . 3 ⊢ (6 gcd 9) = (6 gcd (3 + 6)) |
13 | 3z 9346 | . . . . . 6 ⊢ 3 ∈ ℤ | |
14 | gcdcom 12110 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (3 gcd 6)) | |
15 | 2, 13, 14 | mp2an 426 | . . . . 5 ⊢ (6 gcd 3) = (3 gcd 6) |
16 | 3p3e6 9124 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
17 | 16 | eqcomi 2197 | . . . . . 6 ⊢ 6 = (3 + 3) |
18 | 17 | oveq2i 5929 | . . . . 5 ⊢ (3 gcd 6) = (3 gcd (3 + 3)) |
19 | 15, 18 | eqtri 2214 | . . . 4 ⊢ (6 gcd 3) = (3 gcd (3 + 3)) |
20 | gcdadd 12122 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (6 gcd (3 + 6))) | |
21 | 2, 13, 20 | mp2an 426 | . . . 4 ⊢ (6 gcd 3) = (6 gcd (3 + 6)) |
22 | gcdid 12123 | . . . . . 6 ⊢ (3 ∈ ℤ → (3 gcd 3) = (abs‘3)) | |
23 | 13, 22 | ax-mp 5 | . . . . 5 ⊢ (3 gcd 3) = (abs‘3) |
24 | gcdadd 12122 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 3 ∈ ℤ) → (3 gcd 3) = (3 gcd (3 + 3))) | |
25 | 13, 13, 24 | mp2an 426 | . . . . 5 ⊢ (3 gcd 3) = (3 gcd (3 + 3)) |
26 | 3re 9056 | . . . . . 6 ⊢ 3 ∈ ℝ | |
27 | 0re 8019 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
28 | 3pos 9076 | . . . . . . 7 ⊢ 0 < 3 | |
29 | 27, 26, 28 | ltleii 8122 | . . . . . 6 ⊢ 0 ≤ 3 |
30 | absid 11215 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3) | |
31 | 26, 29, 30 | mp2an 426 | . . . . 5 ⊢ (abs‘3) = 3 |
32 | 23, 25, 31 | 3eqtr3i 2222 | . . . 4 ⊢ (3 gcd (3 + 3)) = 3 |
33 | 19, 21, 32 | 3eqtr3i 2222 | . . 3 ⊢ (6 gcd (3 + 6)) = 3 |
34 | 12, 33 | eqtri 2214 | . 2 ⊢ (6 gcd 9) = 3 |
35 | 6, 34 | eqtri 2214 | 1 ⊢ (-6 gcd 9) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 0cc0 7872 + caddc 7875 ≤ cle 8055 -cneg 8191 3c3 9034 6c6 9037 9c9 9040 ℤcz 9317 abscabs 11141 gcd cgcd 12079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-sup 7043 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-fl 10339 df-mod 10394 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-dvds 11931 df-gcd 12080 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |