ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ex-gcd GIF version

Theorem ex-gcd 16119
Description: Example for df-gcd 12483. (Contributed by AV, 5-Sep-2021.)
Assertion
Ref Expression
ex-gcd (-6 gcd 9) = 3

Proof of Theorem ex-gcd
StepHypRef Expression
1 6nn 9284 . . . 4 6 ∈ ℕ
21nnzi 9475 . . 3 6 ∈ ℤ
3 9nn 9287 . . . 4 9 ∈ ℕ
43nnzi 9475 . . 3 9 ∈ ℤ
5 neggcd 12512 . . 3 ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9))
62, 4, 5mp2an 426 . 2 (-6 gcd 9) = (6 gcd 9)
7 6cn 9200 . . . . . 6 6 ∈ ℂ
8 3cn 9193 . . . . . 6 3 ∈ ℂ
9 6p3e9 9269 . . . . . 6 (6 + 3) = 9
107, 8, 9addcomli 8299 . . . . 5 (3 + 6) = 9
1110eqcomi 2233 . . . 4 9 = (3 + 6)
1211oveq2i 6018 . . 3 (6 gcd 9) = (6 gcd (3 + 6))
13 3z 9483 . . . . . 6 3 ∈ ℤ
14 gcdcom 12502 . . . . . 6 ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (3 gcd 6))
152, 13, 14mp2an 426 . . . . 5 (6 gcd 3) = (3 gcd 6)
16 3p3e6 9261 . . . . . . 7 (3 + 3) = 6
1716eqcomi 2233 . . . . . 6 6 = (3 + 3)
1817oveq2i 6018 . . . . 5 (3 gcd 6) = (3 gcd (3 + 3))
1915, 18eqtri 2250 . . . 4 (6 gcd 3) = (3 gcd (3 + 3))
20 gcdadd 12514 . . . . 5 ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (6 gcd (3 + 6)))
212, 13, 20mp2an 426 . . . 4 (6 gcd 3) = (6 gcd (3 + 6))
22 gcdid 12515 . . . . . 6 (3 ∈ ℤ → (3 gcd 3) = (abs‘3))
2313, 22ax-mp 5 . . . . 5 (3 gcd 3) = (abs‘3)
24 gcdadd 12514 . . . . . 6 ((3 ∈ ℤ ∧ 3 ∈ ℤ) → (3 gcd 3) = (3 gcd (3 + 3)))
2513, 13, 24mp2an 426 . . . . 5 (3 gcd 3) = (3 gcd (3 + 3))
26 3re 9192 . . . . . 6 3 ∈ ℝ
27 0re 8154 . . . . . . 7 0 ∈ ℝ
28 3pos 9212 . . . . . . 7 0 < 3
2927, 26, 28ltleii 8257 . . . . . 6 0 ≤ 3
30 absid 11590 . . . . . 6 ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3)
3126, 29, 30mp2an 426 . . . . 5 (abs‘3) = 3
3223, 25, 313eqtr3i 2258 . . . 4 (3 gcd (3 + 3)) = 3
3319, 21, 323eqtr3i 2258 . . 3 (6 gcd (3 + 6)) = 3
3412, 33eqtri 2250 . 2 (6 gcd 9) = 3
356, 34eqtri 2250 1 (-6 gcd 9) = 3
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6007  cr 8006  0cc0 8007   + caddc 8010  cle 8190  -cneg 8326  3c3 9170  6c6 9173  9c9 9176  cz 9454  abscabs 11516   gcd cgcd 12482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-gcd 12483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator