| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-gcd | GIF version | ||
| Description: Example for df-gcd 12441. (Contributed by AV, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-gcd | ⊢ (-6 gcd 9) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 9244 | . . . 4 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnzi 9435 | . . 3 ⊢ 6 ∈ ℤ |
| 3 | 9nn 9247 | . . . 4 ⊢ 9 ∈ ℕ | |
| 4 | 3 | nnzi 9435 | . . 3 ⊢ 9 ∈ ℤ |
| 5 | neggcd 12470 | . . 3 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
| 6 | 2, 4, 5 | mp2an 426 | . 2 ⊢ (-6 gcd 9) = (6 gcd 9) |
| 7 | 6cn 9160 | . . . . . 6 ⊢ 6 ∈ ℂ | |
| 8 | 3cn 9153 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 9 | 6p3e9 9229 | . . . . . 6 ⊢ (6 + 3) = 9 | |
| 10 | 7, 8, 9 | addcomli 8259 | . . . . 5 ⊢ (3 + 6) = 9 |
| 11 | 10 | eqcomi 2213 | . . . 4 ⊢ 9 = (3 + 6) |
| 12 | 11 | oveq2i 5985 | . . 3 ⊢ (6 gcd 9) = (6 gcd (3 + 6)) |
| 13 | 3z 9443 | . . . . . 6 ⊢ 3 ∈ ℤ | |
| 14 | gcdcom 12460 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (3 gcd 6)) | |
| 15 | 2, 13, 14 | mp2an 426 | . . . . 5 ⊢ (6 gcd 3) = (3 gcd 6) |
| 16 | 3p3e6 9221 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
| 17 | 16 | eqcomi 2213 | . . . . . 6 ⊢ 6 = (3 + 3) |
| 18 | 17 | oveq2i 5985 | . . . . 5 ⊢ (3 gcd 6) = (3 gcd (3 + 3)) |
| 19 | 15, 18 | eqtri 2230 | . . . 4 ⊢ (6 gcd 3) = (3 gcd (3 + 3)) |
| 20 | gcdadd 12472 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (6 gcd (3 + 6))) | |
| 21 | 2, 13, 20 | mp2an 426 | . . . 4 ⊢ (6 gcd 3) = (6 gcd (3 + 6)) |
| 22 | gcdid 12473 | . . . . . 6 ⊢ (3 ∈ ℤ → (3 gcd 3) = (abs‘3)) | |
| 23 | 13, 22 | ax-mp 5 | . . . . 5 ⊢ (3 gcd 3) = (abs‘3) |
| 24 | gcdadd 12472 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 3 ∈ ℤ) → (3 gcd 3) = (3 gcd (3 + 3))) | |
| 25 | 13, 13, 24 | mp2an 426 | . . . . 5 ⊢ (3 gcd 3) = (3 gcd (3 + 3)) |
| 26 | 3re 9152 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 27 | 0re 8114 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 28 | 3pos 9172 | . . . . . . 7 ⊢ 0 < 3 | |
| 29 | 27, 26, 28 | ltleii 8217 | . . . . . 6 ⊢ 0 ≤ 3 |
| 30 | absid 11548 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3) | |
| 31 | 26, 29, 30 | mp2an 426 | . . . . 5 ⊢ (abs‘3) = 3 |
| 32 | 23, 25, 31 | 3eqtr3i 2238 | . . . 4 ⊢ (3 gcd (3 + 3)) = 3 |
| 33 | 19, 21, 32 | 3eqtr3i 2238 | . . 3 ⊢ (6 gcd (3 + 6)) = 3 |
| 34 | 12, 33 | eqtri 2230 | . 2 ⊢ (6 gcd 9) = 3 |
| 35 | 6, 34 | eqtri 2230 | 1 ⊢ (-6 gcd 9) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 ℝcr 7966 0cc0 7967 + caddc 7970 ≤ cle 8150 -cneg 8286 3c3 9130 6c6 9133 9c9 9136 ℤcz 9414 abscabs 11474 gcd cgcd 12440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-stab 835 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-sup 7119 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fz 10173 df-fzo 10307 df-fl 10457 df-mod 10512 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-dvds 12265 df-gcd 12441 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |