Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ex-gcd | GIF version |
Description: Example for df-gcd 11876. (Contributed by AV, 5-Sep-2021.) |
Ref | Expression |
---|---|
ex-gcd | ⊢ (-6 gcd 9) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn 9022 | . . . 4 ⊢ 6 ∈ ℕ | |
2 | 1 | nnzi 9212 | . . 3 ⊢ 6 ∈ ℤ |
3 | 9nn 9025 | . . . 4 ⊢ 9 ∈ ℕ | |
4 | 3 | nnzi 9212 | . . 3 ⊢ 9 ∈ ℤ |
5 | neggcd 11916 | . . 3 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
6 | 2, 4, 5 | mp2an 423 | . 2 ⊢ (-6 gcd 9) = (6 gcd 9) |
7 | 6cn 8939 | . . . . . 6 ⊢ 6 ∈ ℂ | |
8 | 3cn 8932 | . . . . . 6 ⊢ 3 ∈ ℂ | |
9 | 6p3e9 9007 | . . . . . 6 ⊢ (6 + 3) = 9 | |
10 | 7, 8, 9 | addcomli 8043 | . . . . 5 ⊢ (3 + 6) = 9 |
11 | 10 | eqcomi 2169 | . . . 4 ⊢ 9 = (3 + 6) |
12 | 11 | oveq2i 5853 | . . 3 ⊢ (6 gcd 9) = (6 gcd (3 + 6)) |
13 | 3z 9220 | . . . . . 6 ⊢ 3 ∈ ℤ | |
14 | gcdcom 11906 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (3 gcd 6)) | |
15 | 2, 13, 14 | mp2an 423 | . . . . 5 ⊢ (6 gcd 3) = (3 gcd 6) |
16 | 3p3e6 8999 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
17 | 16 | eqcomi 2169 | . . . . . 6 ⊢ 6 = (3 + 3) |
18 | 17 | oveq2i 5853 | . . . . 5 ⊢ (3 gcd 6) = (3 gcd (3 + 3)) |
19 | 15, 18 | eqtri 2186 | . . . 4 ⊢ (6 gcd 3) = (3 gcd (3 + 3)) |
20 | gcdadd 11918 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (6 gcd (3 + 6))) | |
21 | 2, 13, 20 | mp2an 423 | . . . 4 ⊢ (6 gcd 3) = (6 gcd (3 + 6)) |
22 | gcdid 11919 | . . . . . 6 ⊢ (3 ∈ ℤ → (3 gcd 3) = (abs‘3)) | |
23 | 13, 22 | ax-mp 5 | . . . . 5 ⊢ (3 gcd 3) = (abs‘3) |
24 | gcdadd 11918 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 3 ∈ ℤ) → (3 gcd 3) = (3 gcd (3 + 3))) | |
25 | 13, 13, 24 | mp2an 423 | . . . . 5 ⊢ (3 gcd 3) = (3 gcd (3 + 3)) |
26 | 3re 8931 | . . . . . 6 ⊢ 3 ∈ ℝ | |
27 | 0re 7899 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
28 | 3pos 8951 | . . . . . . 7 ⊢ 0 < 3 | |
29 | 27, 26, 28 | ltleii 8001 | . . . . . 6 ⊢ 0 ≤ 3 |
30 | absid 11013 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3) | |
31 | 26, 29, 30 | mp2an 423 | . . . . 5 ⊢ (abs‘3) = 3 |
32 | 23, 25, 31 | 3eqtr3i 2194 | . . . 4 ⊢ (3 gcd (3 + 3)) = 3 |
33 | 19, 21, 32 | 3eqtr3i 2194 | . . 3 ⊢ (6 gcd (3 + 6)) = 3 |
34 | 12, 33 | eqtri 2186 | . 2 ⊢ (6 gcd 9) = 3 |
35 | 6, 34 | eqtri 2186 | 1 ⊢ (-6 gcd 9) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℝcr 7752 0cc0 7753 + caddc 7756 ≤ cle 7934 -cneg 8070 3c3 8909 6c6 8912 9c9 8915 ℤcz 9191 abscabs 10939 gcd cgcd 11875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-sup 6949 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-fl 10205 df-mod 10258 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-dvds 11728 df-gcd 11876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |