| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-gcd | GIF version | ||
| Description: Example for df-gcd 12146. (Contributed by AV, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-gcd | ⊢ (-6 gcd 9) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 9173 | . . . 4 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnzi 9364 | . . 3 ⊢ 6 ∈ ℤ |
| 3 | 9nn 9176 | . . . 4 ⊢ 9 ∈ ℕ | |
| 4 | 3 | nnzi 9364 | . . 3 ⊢ 9 ∈ ℤ |
| 5 | neggcd 12175 | . . 3 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
| 6 | 2, 4, 5 | mp2an 426 | . 2 ⊢ (-6 gcd 9) = (6 gcd 9) |
| 7 | 6cn 9089 | . . . . . 6 ⊢ 6 ∈ ℂ | |
| 8 | 3cn 9082 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 9 | 6p3e9 9158 | . . . . . 6 ⊢ (6 + 3) = 9 | |
| 10 | 7, 8, 9 | addcomli 8188 | . . . . 5 ⊢ (3 + 6) = 9 |
| 11 | 10 | eqcomi 2200 | . . . 4 ⊢ 9 = (3 + 6) |
| 12 | 11 | oveq2i 5936 | . . 3 ⊢ (6 gcd 9) = (6 gcd (3 + 6)) |
| 13 | 3z 9372 | . . . . . 6 ⊢ 3 ∈ ℤ | |
| 14 | gcdcom 12165 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (3 gcd 6)) | |
| 15 | 2, 13, 14 | mp2an 426 | . . . . 5 ⊢ (6 gcd 3) = (3 gcd 6) |
| 16 | 3p3e6 9150 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
| 17 | 16 | eqcomi 2200 | . . . . . 6 ⊢ 6 = (3 + 3) |
| 18 | 17 | oveq2i 5936 | . . . . 5 ⊢ (3 gcd 6) = (3 gcd (3 + 3)) |
| 19 | 15, 18 | eqtri 2217 | . . . 4 ⊢ (6 gcd 3) = (3 gcd (3 + 3)) |
| 20 | gcdadd 12177 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (6 gcd (3 + 6))) | |
| 21 | 2, 13, 20 | mp2an 426 | . . . 4 ⊢ (6 gcd 3) = (6 gcd (3 + 6)) |
| 22 | gcdid 12178 | . . . . . 6 ⊢ (3 ∈ ℤ → (3 gcd 3) = (abs‘3)) | |
| 23 | 13, 22 | ax-mp 5 | . . . . 5 ⊢ (3 gcd 3) = (abs‘3) |
| 24 | gcdadd 12177 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 3 ∈ ℤ) → (3 gcd 3) = (3 gcd (3 + 3))) | |
| 25 | 13, 13, 24 | mp2an 426 | . . . . 5 ⊢ (3 gcd 3) = (3 gcd (3 + 3)) |
| 26 | 3re 9081 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 27 | 0re 8043 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 28 | 3pos 9101 | . . . . . . 7 ⊢ 0 < 3 | |
| 29 | 27, 26, 28 | ltleii 8146 | . . . . . 6 ⊢ 0 ≤ 3 |
| 30 | absid 11253 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3) | |
| 31 | 26, 29, 30 | mp2an 426 | . . . . 5 ⊢ (abs‘3) = 3 |
| 32 | 23, 25, 31 | 3eqtr3i 2225 | . . . 4 ⊢ (3 gcd (3 + 3)) = 3 |
| 33 | 19, 21, 32 | 3eqtr3i 2225 | . . 3 ⊢ (6 gcd (3 + 6)) = 3 |
| 34 | 12, 33 | eqtri 2217 | . 2 ⊢ (6 gcd 9) = 3 |
| 35 | 6, 34 | eqtri 2217 | 1 ⊢ (-6 gcd 9) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℝcr 7895 0cc0 7896 + caddc 7899 ≤ cle 8079 -cneg 8215 3c3 9059 6c6 9062 9c9 9065 ℤcz 9343 abscabs 11179 gcd cgcd 12145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-sup 7059 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-fl 10377 df-mod 10432 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-dvds 11970 df-gcd 12146 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |