| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ex-gcd | GIF version | ||
| Description: Example for df-gcd 12319. (Contributed by AV, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| ex-gcd | ⊢ (-6 gcd 9) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn 9209 | . . . 4 ⊢ 6 ∈ ℕ | |
| 2 | 1 | nnzi 9400 | . . 3 ⊢ 6 ∈ ℤ |
| 3 | 9nn 9212 | . . . 4 ⊢ 9 ∈ ℕ | |
| 4 | 3 | nnzi 9400 | . . 3 ⊢ 9 ∈ ℤ |
| 5 | neggcd 12348 | . . 3 ⊢ ((6 ∈ ℤ ∧ 9 ∈ ℤ) → (-6 gcd 9) = (6 gcd 9)) | |
| 6 | 2, 4, 5 | mp2an 426 | . 2 ⊢ (-6 gcd 9) = (6 gcd 9) |
| 7 | 6cn 9125 | . . . . . 6 ⊢ 6 ∈ ℂ | |
| 8 | 3cn 9118 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 9 | 6p3e9 9194 | . . . . . 6 ⊢ (6 + 3) = 9 | |
| 10 | 7, 8, 9 | addcomli 8224 | . . . . 5 ⊢ (3 + 6) = 9 |
| 11 | 10 | eqcomi 2210 | . . . 4 ⊢ 9 = (3 + 6) |
| 12 | 11 | oveq2i 5962 | . . 3 ⊢ (6 gcd 9) = (6 gcd (3 + 6)) |
| 13 | 3z 9408 | . . . . . 6 ⊢ 3 ∈ ℤ | |
| 14 | gcdcom 12338 | . . . . . 6 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (3 gcd 6)) | |
| 15 | 2, 13, 14 | mp2an 426 | . . . . 5 ⊢ (6 gcd 3) = (3 gcd 6) |
| 16 | 3p3e6 9186 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
| 17 | 16 | eqcomi 2210 | . . . . . 6 ⊢ 6 = (3 + 3) |
| 18 | 17 | oveq2i 5962 | . . . . 5 ⊢ (3 gcd 6) = (3 gcd (3 + 3)) |
| 19 | 15, 18 | eqtri 2227 | . . . 4 ⊢ (6 gcd 3) = (3 gcd (3 + 3)) |
| 20 | gcdadd 12350 | . . . . 5 ⊢ ((6 ∈ ℤ ∧ 3 ∈ ℤ) → (6 gcd 3) = (6 gcd (3 + 6))) | |
| 21 | 2, 13, 20 | mp2an 426 | . . . 4 ⊢ (6 gcd 3) = (6 gcd (3 + 6)) |
| 22 | gcdid 12351 | . . . . . 6 ⊢ (3 ∈ ℤ → (3 gcd 3) = (abs‘3)) | |
| 23 | 13, 22 | ax-mp 5 | . . . . 5 ⊢ (3 gcd 3) = (abs‘3) |
| 24 | gcdadd 12350 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 3 ∈ ℤ) → (3 gcd 3) = (3 gcd (3 + 3))) | |
| 25 | 13, 13, 24 | mp2an 426 | . . . . 5 ⊢ (3 gcd 3) = (3 gcd (3 + 3)) |
| 26 | 3re 9117 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 27 | 0re 8079 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 28 | 3pos 9137 | . . . . . . 7 ⊢ 0 < 3 | |
| 29 | 27, 26, 28 | ltleii 8182 | . . . . . 6 ⊢ 0 ≤ 3 |
| 30 | absid 11426 | . . . . . 6 ⊢ ((3 ∈ ℝ ∧ 0 ≤ 3) → (abs‘3) = 3) | |
| 31 | 26, 29, 30 | mp2an 426 | . . . . 5 ⊢ (abs‘3) = 3 |
| 32 | 23, 25, 31 | 3eqtr3i 2235 | . . . 4 ⊢ (3 gcd (3 + 3)) = 3 |
| 33 | 19, 21, 32 | 3eqtr3i 2235 | . . 3 ⊢ (6 gcd (3 + 6)) = 3 |
| 34 | 12, 33 | eqtri 2227 | . 2 ⊢ (6 gcd 9) = 3 |
| 35 | 6, 34 | eqtri 2227 | 1 ⊢ (-6 gcd 9) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 class class class wbr 4047 ‘cfv 5276 (class class class)co 5951 ℝcr 7931 0cc0 7932 + caddc 7935 ≤ cle 8115 -cneg 8251 3c3 9095 6c6 9098 9c9 9101 ℤcz 9379 abscabs 11352 gcd cgcd 12318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-dvds 12143 df-gcd 12319 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |