ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp0 GIF version

Theorem xp0 5050
Description: The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.)
Assertion
Ref Expression
xp0 (𝐴 × ∅) = ∅

Proof of Theorem xp0
StepHypRef Expression
1 0xp 4708 . . 3 (∅ × 𝐴) = ∅
21cnveqi 4804 . 2 (∅ × 𝐴) =
3 cnvxp 5049 . 2 (∅ × 𝐴) = (𝐴 × ∅)
4 cnv0 5034 . 2 ∅ = ∅
52, 3, 43eqtr3i 2206 1 (𝐴 × ∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1353  c0 3424   × cxp 4626  ccnv 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636
This theorem is referenced by:  xpeq0r  5053  xpdisj2  5056  djuassen  7218  xpdjuen  7219  0met  13969
  Copyright terms: Public domain W3C validator