| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xp0 | GIF version | ||
| Description: The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.) |
| Ref | Expression |
|---|---|
| xp0 | ⊢ (𝐴 × ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xp 4759 | . . 3 ⊢ (∅ × 𝐴) = ∅ | |
| 2 | 1 | cnveqi 4857 | . 2 ⊢ ◡(∅ × 𝐴) = ◡∅ |
| 3 | cnvxp 5106 | . 2 ⊢ ◡(∅ × 𝐴) = (𝐴 × ∅) | |
| 4 | cnv0 5091 | . 2 ⊢ ◡∅ = ∅ | |
| 5 | 2, 3, 4 | 3eqtr3i 2235 | 1 ⊢ (𝐴 × ∅) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∅c0 3461 × cxp 4677 ◡ccnv 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-cnv 4687 |
| This theorem is referenced by: xpeq0r 5110 xpdisj2 5113 djuassen 7336 xpdjuen 7337 0met 14900 |
| Copyright terms: Public domain | W3C validator |