![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rec1nq | GIF version |
Description: Reciprocal of positive fraction one. (Contributed by Jim Kingdon, 29-Dec-2019.) |
Ref | Expression |
---|---|
rec1nq | ⊢ (*Q‘1Q) = 1Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nq 7379 | . . . 4 ⊢ 1Q ∈ Q | |
2 | recclnq 7405 | . . . 4 ⊢ (1Q ∈ Q → (*Q‘1Q) ∈ Q) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (*Q‘1Q) ∈ Q |
4 | mulcomnqg 7396 | . . 3 ⊢ (((*Q‘1Q) ∈ Q ∧ 1Q ∈ Q) → ((*Q‘1Q) ·Q 1Q) = (1Q ·Q (*Q‘1Q))) | |
5 | 3, 1, 4 | mp2an 426 | . 2 ⊢ ((*Q‘1Q) ·Q 1Q) = (1Q ·Q (*Q‘1Q)) |
6 | mulidnq 7402 | . . 3 ⊢ ((*Q‘1Q) ∈ Q → ((*Q‘1Q) ·Q 1Q) = (*Q‘1Q)) | |
7 | 1, 2, 6 | mp2b 8 | . 2 ⊢ ((*Q‘1Q) ·Q 1Q) = (*Q‘1Q) |
8 | recidnq 7406 | . . 3 ⊢ (1Q ∈ Q → (1Q ·Q (*Q‘1Q)) = 1Q) | |
9 | 1, 8 | ax-mp 5 | . 2 ⊢ (1Q ·Q (*Q‘1Q)) = 1Q |
10 | 5, 7, 9 | 3eqtr3i 2216 | 1 ⊢ (*Q‘1Q) = 1Q |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∈ wcel 2158 ‘cfv 5228 (class class class)co 5888 Qcnq 7293 1Qc1q 7294 ·Q cmq 7296 *Qcrq 7297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-irdg 6385 df-1o 6431 df-oadd 6435 df-omul 6436 df-er 6549 df-ec 6551 df-qs 6555 df-ni 7317 df-mi 7319 df-mpq 7358 df-enq 7360 df-nqqs 7361 df-mqqs 7363 df-1nqqs 7364 df-rq 7365 |
This theorem is referenced by: recexprlem1ssl 7646 caucvgprlemm 7681 caucvgprprlemmu 7708 caucvgsr 7815 |
Copyright terms: Public domain | W3C validator |