| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rec1nq | GIF version | ||
| Description: Reciprocal of positive fraction one. (Contributed by Jim Kingdon, 29-Dec-2019.) |
| Ref | Expression |
|---|---|
| rec1nq | ⊢ (*Q‘1Q) = 1Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nq 7561 | . . . 4 ⊢ 1Q ∈ Q | |
| 2 | recclnq 7587 | . . . 4 ⊢ (1Q ∈ Q → (*Q‘1Q) ∈ Q) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (*Q‘1Q) ∈ Q |
| 4 | mulcomnqg 7578 | . . 3 ⊢ (((*Q‘1Q) ∈ Q ∧ 1Q ∈ Q) → ((*Q‘1Q) ·Q 1Q) = (1Q ·Q (*Q‘1Q))) | |
| 5 | 3, 1, 4 | mp2an 426 | . 2 ⊢ ((*Q‘1Q) ·Q 1Q) = (1Q ·Q (*Q‘1Q)) |
| 6 | mulidnq 7584 | . . 3 ⊢ ((*Q‘1Q) ∈ Q → ((*Q‘1Q) ·Q 1Q) = (*Q‘1Q)) | |
| 7 | 1, 2, 6 | mp2b 8 | . 2 ⊢ ((*Q‘1Q) ·Q 1Q) = (*Q‘1Q) |
| 8 | recidnq 7588 | . . 3 ⊢ (1Q ∈ Q → (1Q ·Q (*Q‘1Q)) = 1Q) | |
| 9 | 1, 8 | ax-mp 5 | . 2 ⊢ (1Q ·Q (*Q‘1Q)) = 1Q |
| 10 | 5, 7, 9 | 3eqtr3i 2258 | 1 ⊢ (*Q‘1Q) = 1Q |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6007 Qcnq 7475 1Qc1q 7476 ·Q cmq 7478 *Qcrq 7479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-1o 6568 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-mi 7501 df-mpq 7540 df-enq 7542 df-nqqs 7543 df-mqqs 7545 df-1nqqs 7546 df-rq 7547 |
| This theorem is referenced by: recexprlem1ssl 7828 caucvgprlemm 7863 caucvgprprlemmu 7890 caucvgsr 7997 |
| Copyright terms: Public domain | W3C validator |