![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rec1nq | GIF version |
Description: Reciprocal of positive fraction one. (Contributed by Jim Kingdon, 29-Dec-2019.) |
Ref | Expression |
---|---|
rec1nq | ⊢ (*Q‘1Q) = 1Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nq 6986 | . . . 4 ⊢ 1Q ∈ Q | |
2 | recclnq 7012 | . . . 4 ⊢ (1Q ∈ Q → (*Q‘1Q) ∈ Q) | |
3 | 1, 2 | ax-mp 7 | . . 3 ⊢ (*Q‘1Q) ∈ Q |
4 | mulcomnqg 7003 | . . 3 ⊢ (((*Q‘1Q) ∈ Q ∧ 1Q ∈ Q) → ((*Q‘1Q) ·Q 1Q) = (1Q ·Q (*Q‘1Q))) | |
5 | 3, 1, 4 | mp2an 418 | . 2 ⊢ ((*Q‘1Q) ·Q 1Q) = (1Q ·Q (*Q‘1Q)) |
6 | mulidnq 7009 | . . 3 ⊢ ((*Q‘1Q) ∈ Q → ((*Q‘1Q) ·Q 1Q) = (*Q‘1Q)) | |
7 | 1, 2, 6 | mp2b 8 | . 2 ⊢ ((*Q‘1Q) ·Q 1Q) = (*Q‘1Q) |
8 | recidnq 7013 | . . 3 ⊢ (1Q ∈ Q → (1Q ·Q (*Q‘1Q)) = 1Q) | |
9 | 1, 8 | ax-mp 7 | . 2 ⊢ (1Q ·Q (*Q‘1Q)) = 1Q |
10 | 5, 7, 9 | 3eqtr3i 2117 | 1 ⊢ (*Q‘1Q) = 1Q |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 ∈ wcel 1439 ‘cfv 5028 (class class class)co 5666 Qcnq 6900 1Qc1q 6901 ·Q cmq 6903 *Qcrq 6904 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3960 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-iinf 4416 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-tr 3943 df-id 4129 df-iord 4202 df-on 4204 df-suc 4207 df-iom 4419 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-recs 6084 df-irdg 6149 df-1o 6195 df-oadd 6199 df-omul 6200 df-er 6306 df-ec 6308 df-qs 6312 df-ni 6924 df-mi 6926 df-mpq 6965 df-enq 6967 df-nqqs 6968 df-mqqs 6970 df-1nqqs 6971 df-rq 6972 |
This theorem is referenced by: recexprlem1ssl 7253 caucvgprlemm 7288 caucvgprprlemmu 7315 caucvgsr 7408 |
Copyright terms: Public domain | W3C validator |