ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  i4 GIF version

Theorem i4 10407
Description: i to the fourth power. (Contributed by NM, 31-Jan-2007.)
Assertion
Ref Expression
i4 (i↑4) = 1

Proof of Theorem i4
StepHypRef Expression
1 ax-icn 7727 . . 3 i ∈ ℂ
2 2nn0 9006 . . 3 2 ∈ ℕ0
3 expadd 10347 . . 3 ((i ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (i↑(2 + 2)) = ((i↑2) · (i↑2)))
41, 2, 2, 3mp3an 1315 . 2 (i↑(2 + 2)) = ((i↑2) · (i↑2))
5 2p2e4 8859 . . 3 (2 + 2) = 4
65oveq2i 5785 . 2 (i↑(2 + 2)) = (i↑4)
7 i2 10405 . . . 4 (i↑2) = -1
87, 7oveq12i 5786 . . 3 ((i↑2) · (i↑2)) = (-1 · -1)
9 ax-1cn 7725 . . . 4 1 ∈ ℂ
109, 9mul2negi 8180 . . 3 (-1 · -1) = (1 · 1)
11 1t1e1 8884 . . 3 (1 · 1) = 1
128, 10, 113eqtri 2164 . 2 ((i↑2) · (i↑2)) = 1
134, 6, 123eqtr3i 2168 1 (i↑4) = 1
Colors of variables: wff set class
Syntax hints:   = wceq 1331  wcel 1480  (class class class)co 5774  cc 7630  1c1 7633  ici 7634   + caddc 7635   · cmul 7637  -cneg 7946  2c2 8783  4c4 8785  0cn0 8989  cexp 10304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-seqfrec 10231  df-exp 10305
This theorem is referenced by:  iexpcyc  10409
  Copyright terms: Public domain W3C validator