| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ixpconstg | GIF version | ||
| Description: Infinite Cartesian product of a constant 𝐵. (Contributed by Mario Carneiro, 11-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| ixpconstg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑𝑚 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2766 | . . . . 5 ⊢ 𝑓 ∈ V | |
| 2 | 1 | elixpconst 6765 | . . . 4 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝑓:𝐴⟶𝐵) | 
| 3 | 2 | abbi2i 2311 | . . 3 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} | 
| 4 | mapvalg 6717 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 ↑𝑚 𝐴) = {𝑓 ∣ 𝑓:𝐴⟶𝐵}) | |
| 5 | 3, 4 | eqtr4id 2248 | . 2 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑𝑚 𝐴)) | 
| 6 | 5 | ancoms 268 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑𝑚 𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cab 2182 ⟶wf 5254 (class class class)co 5922 ↑𝑚 cmap 6707 Xcixp 6757 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-map 6709 df-ixp 6758 | 
| This theorem is referenced by: ixpconst 6767 mapsnf1o 6796 | 
| Copyright terms: Public domain | W3C validator |