ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad2ant2lr GIF version

Theorem ad2ant2lr 502
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.)
Hypothesis
Ref Expression
ad2ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad2ant2lr (((𝜃𝜑) ∧ (𝜓𝜏)) → 𝜒)

Proof of Theorem ad2ant2lr
StepHypRef Expression
1 ad2ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantrr 471 . 2 ((𝜑 ∧ (𝜓𝜏)) → 𝜒)
32adantll 468 1 (((𝜃𝜑) ∧ (𝜓𝜏)) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  mpteqb  5576  fiunsnnn  6847  addcomnqg  7322  addassnqg  7323  nqtri3or  7337  lt2addnq  7345  lt2mulnq  7346  enq0ref  7374  enq0tr  7375  nqnq0pi  7379  nqpnq0nq  7394  nqnq0a  7395  distrnq0  7400  addassnq0lemcl  7402  ltsrprg  7688  mulcomsrg  7698  mulasssrg  7699  distrsrg  7700  aptisr  7720  mulcnsr  7776  cnegex  8076  sub4  8143  muladd  8282  ltleadd  8344  divdivdivap  8609  divadddivap  8623  ltmul12a  8755  fzrev  10019  facndiv  10652  cncongr1  12035  blbas  13073  cncfmet  13219  ptolemy  13385
  Copyright terms: Public domain W3C validator