Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ad2ant2lr | GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrr 476 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
3 | 2 | adantll 473 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: mpteqb 5584 fiunsnnn 6856 addcomnqg 7332 addassnqg 7333 nqtri3or 7347 lt2addnq 7355 lt2mulnq 7356 enq0ref 7384 enq0tr 7385 nqnq0pi 7389 nqpnq0nq 7404 nqnq0a 7405 distrnq0 7410 addassnq0lemcl 7412 ltsrprg 7698 mulcomsrg 7708 mulasssrg 7709 distrsrg 7710 aptisr 7730 mulcnsr 7786 cnegex 8086 sub4 8153 muladd 8292 ltleadd 8354 divdivdivap 8619 divadddivap 8633 ltmul12a 8765 fzrev 10029 facndiv 10662 cncongr1 12046 blbas 13188 cncfmet 13334 ptolemy 13500 |
Copyright terms: Public domain | W3C validator |