| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2lr | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrr 479 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| 3 | 2 | adantll 476 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpteqb 5682 fiunsnnn 6992 addcomnqg 7509 addassnqg 7510 nqtri3or 7524 lt2addnq 7532 lt2mulnq 7533 enq0ref 7561 enq0tr 7562 nqnq0pi 7566 nqpnq0nq 7581 nqnq0a 7582 distrnq0 7587 addassnq0lemcl 7589 ltsrprg 7875 mulcomsrg 7885 mulasssrg 7886 distrsrg 7887 aptisr 7907 mulcnsr 7963 cnegex 8265 sub4 8332 muladd 8471 ltleadd 8534 divdivdivap 8801 divadddivap 8815 ltmul12a 8948 fzrev 10221 facndiv 10901 cncongr1 12495 ghmeql 13673 blbas 14975 cncfmet 15134 ptolemy 15366 |
| Copyright terms: Public domain | W3C validator |