Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ad2ant2lr | GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrr 471 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
3 | 2 | adantll 468 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: mpteqb 5576 fiunsnnn 6847 addcomnqg 7322 addassnqg 7323 nqtri3or 7337 lt2addnq 7345 lt2mulnq 7346 enq0ref 7374 enq0tr 7375 nqnq0pi 7379 nqpnq0nq 7394 nqnq0a 7395 distrnq0 7400 addassnq0lemcl 7402 ltsrprg 7688 mulcomsrg 7698 mulasssrg 7699 distrsrg 7700 aptisr 7720 mulcnsr 7776 cnegex 8076 sub4 8143 muladd 8282 ltleadd 8344 divdivdivap 8609 divadddivap 8623 ltmul12a 8755 fzrev 10019 facndiv 10652 cncongr1 12035 blbas 13073 cncfmet 13219 ptolemy 13385 |
Copyright terms: Public domain | W3C validator |