| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2lr | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrr 479 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| 3 | 2 | adantll 476 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpteqb 5655 fiunsnnn 6951 addcomnqg 7465 addassnqg 7466 nqtri3or 7480 lt2addnq 7488 lt2mulnq 7489 enq0ref 7517 enq0tr 7518 nqnq0pi 7522 nqpnq0nq 7537 nqnq0a 7538 distrnq0 7543 addassnq0lemcl 7545 ltsrprg 7831 mulcomsrg 7841 mulasssrg 7842 distrsrg 7843 aptisr 7863 mulcnsr 7919 cnegex 8221 sub4 8288 muladd 8427 ltleadd 8490 divdivdivap 8757 divadddivap 8771 ltmul12a 8904 fzrev 10176 facndiv 10848 cncongr1 12296 ghmeql 13473 blbas 14753 cncfmet 14912 ptolemy 15144 |
| Copyright terms: Public domain | W3C validator |