![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ad2ant2lr | GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrr 479 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
3 | 2 | adantll 476 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: mpteqb 5648 fiunsnnn 6937 addcomnqg 7441 addassnqg 7442 nqtri3or 7456 lt2addnq 7464 lt2mulnq 7465 enq0ref 7493 enq0tr 7494 nqnq0pi 7498 nqpnq0nq 7513 nqnq0a 7514 distrnq0 7519 addassnq0lemcl 7521 ltsrprg 7807 mulcomsrg 7817 mulasssrg 7818 distrsrg 7819 aptisr 7839 mulcnsr 7895 cnegex 8197 sub4 8264 muladd 8403 ltleadd 8465 divdivdivap 8732 divadddivap 8746 ltmul12a 8879 fzrev 10150 facndiv 10810 cncongr1 12241 ghmeql 13337 blbas 14601 cncfmet 14747 ptolemy 14959 |
Copyright terms: Public domain | W3C validator |