| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2lr | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrr 479 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| 3 | 2 | adantll 476 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpteqb 5655 fiunsnnn 6951 addcomnqg 7467 addassnqg 7468 nqtri3or 7482 lt2addnq 7490 lt2mulnq 7491 enq0ref 7519 enq0tr 7520 nqnq0pi 7524 nqpnq0nq 7539 nqnq0a 7540 distrnq0 7545 addassnq0lemcl 7547 ltsrprg 7833 mulcomsrg 7843 mulasssrg 7844 distrsrg 7845 aptisr 7865 mulcnsr 7921 cnegex 8223 sub4 8290 muladd 8429 ltleadd 8492 divdivdivap 8759 divadddivap 8773 ltmul12a 8906 fzrev 10178 facndiv 10850 cncongr1 12298 ghmeql 13475 blbas 14777 cncfmet 14936 ptolemy 15168 |
| Copyright terms: Public domain | W3C validator |