| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2lr | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 23-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2lr | ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrr 479 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| 3 | 2 | adantll 476 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpteqb 5653 fiunsnnn 6943 addcomnqg 7450 addassnqg 7451 nqtri3or 7465 lt2addnq 7473 lt2mulnq 7474 enq0ref 7502 enq0tr 7503 nqnq0pi 7507 nqpnq0nq 7522 nqnq0a 7523 distrnq0 7528 addassnq0lemcl 7530 ltsrprg 7816 mulcomsrg 7826 mulasssrg 7827 distrsrg 7828 aptisr 7848 mulcnsr 7904 cnegex 8206 sub4 8273 muladd 8412 ltleadd 8475 divdivdivap 8742 divadddivap 8756 ltmul12a 8889 fzrev 10161 facndiv 10833 cncongr1 12281 ghmeql 13407 blbas 14679 cncfmet 14838 ptolemy 15070 |
| Copyright terms: Public domain | W3C validator |