ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassnq0lemcl GIF version

Theorem addassnq0lemcl 7459
Description: A natural number closure law. Lemma for addassnq0 7460. (Contributed by Jim Kingdon, 3-Dec-2019.)
Assertion
Ref Expression
addassnq0lemcl (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω ∧ (𝐽 ·o 𝐿) ∈ N))

Proof of Theorem addassnq0lemcl
StepHypRef Expression
1 pinn 7307 . . . . 5 (𝐿N𝐿 ∈ ω)
2 nnmcl 6481 . . . . 5 ((𝐼 ∈ ω ∧ 𝐿 ∈ ω) → (𝐼 ·o 𝐿) ∈ ω)
31, 2sylan2 286 . . . 4 ((𝐼 ∈ ω ∧ 𝐿N) → (𝐼 ·o 𝐿) ∈ ω)
43ad2ant2rl 511 . . 3 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (𝐼 ·o 𝐿) ∈ ω)
5 pinn 7307 . . . . 5 (𝐽N𝐽 ∈ ω)
6 nnmcl 6481 . . . . 5 ((𝐽 ∈ ω ∧ 𝐾 ∈ ω) → (𝐽 ·o 𝐾) ∈ ω)
75, 6sylan 283 . . . 4 ((𝐽N𝐾 ∈ ω) → (𝐽 ·o 𝐾) ∈ ω)
87ad2ant2lr 510 . . 3 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (𝐽 ·o 𝐾) ∈ ω)
9 nnacl 6480 . . 3 (((𝐼 ·o 𝐿) ∈ ω ∧ (𝐽 ·o 𝐾) ∈ ω) → ((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω)
104, 8, 9syl2anc 411 . 2 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → ((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω)
11 mulpiord 7315 . . . 4 ((𝐽N𝐿N) → (𝐽 ·N 𝐿) = (𝐽 ·o 𝐿))
12 mulclpi 7326 . . . 4 ((𝐽N𝐿N) → (𝐽 ·N 𝐿) ∈ N)
1311, 12eqeltrrd 2255 . . 3 ((𝐽N𝐿N) → (𝐽 ·o 𝐿) ∈ N)
1413ad2ant2l 508 . 2 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (𝐽 ·o 𝐿) ∈ N)
1510, 14jca 306 1 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω ∧ (𝐽 ·o 𝐿) ∈ N))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  ωcom 4589  (class class class)co 5874   +o coa 6413   ·o comu 6414  Ncnpi 7270   ·N cmi 7272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-oadd 6420  df-omul 6421  df-ni 7302  df-mi 7304
This theorem is referenced by:  addassnq0  7460
  Copyright terms: Public domain W3C validator