Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addassnq0lemcl | GIF version |
Description: A natural number closure law. Lemma for addassnq0 7424. (Contributed by Jim Kingdon, 3-Dec-2019.) |
Ref | Expression |
---|---|
addassnq0lemcl | ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → (((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω ∧ (𝐽 ·o 𝐿) ∈ N)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7271 | . . . . 5 ⊢ (𝐿 ∈ N → 𝐿 ∈ ω) | |
2 | nnmcl 6460 | . . . . 5 ⊢ ((𝐼 ∈ ω ∧ 𝐿 ∈ ω) → (𝐼 ·o 𝐿) ∈ ω) | |
3 | 1, 2 | sylan2 284 | . . . 4 ⊢ ((𝐼 ∈ ω ∧ 𝐿 ∈ N) → (𝐼 ·o 𝐿) ∈ ω) |
4 | 3 | ad2ant2rl 508 | . . 3 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → (𝐼 ·o 𝐿) ∈ ω) |
5 | pinn 7271 | . . . . 5 ⊢ (𝐽 ∈ N → 𝐽 ∈ ω) | |
6 | nnmcl 6460 | . . . . 5 ⊢ ((𝐽 ∈ ω ∧ 𝐾 ∈ ω) → (𝐽 ·o 𝐾) ∈ ω) | |
7 | 5, 6 | sylan 281 | . . . 4 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ ω) → (𝐽 ·o 𝐾) ∈ ω) |
8 | 7 | ad2ant2lr 507 | . . 3 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → (𝐽 ·o 𝐾) ∈ ω) |
9 | nnacl 6459 | . . 3 ⊢ (((𝐼 ·o 𝐿) ∈ ω ∧ (𝐽 ·o 𝐾) ∈ ω) → ((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω) | |
10 | 4, 8, 9 | syl2anc 409 | . 2 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → ((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω) |
11 | mulpiord 7279 | . . . 4 ⊢ ((𝐽 ∈ N ∧ 𝐿 ∈ N) → (𝐽 ·N 𝐿) = (𝐽 ·o 𝐿)) | |
12 | mulclpi 7290 | . . . 4 ⊢ ((𝐽 ∈ N ∧ 𝐿 ∈ N) → (𝐽 ·N 𝐿) ∈ N) | |
13 | 11, 12 | eqeltrrd 2248 | . . 3 ⊢ ((𝐽 ∈ N ∧ 𝐿 ∈ N) → (𝐽 ·o 𝐿) ∈ N) |
14 | 13 | ad2ant2l 505 | . 2 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → (𝐽 ·o 𝐿) ∈ N) |
15 | 10, 14 | jca 304 | 1 ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → (((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω ∧ (𝐽 ·o 𝐿) ∈ N)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 ωcom 4574 (class class class)co 5853 +o coa 6392 ·o comu 6393 Ncnpi 7234 ·N cmi 7236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-ni 7266 df-mi 7268 |
This theorem is referenced by: addassnq0 7424 |
Copyright terms: Public domain | W3C validator |