ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassnq0lemcl GIF version

Theorem addassnq0lemcl 7211
Description: A natural number closure law. Lemma for addassnq0 7212. (Contributed by Jim Kingdon, 3-Dec-2019.)
Assertion
Ref Expression
addassnq0lemcl (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω ∧ (𝐽 ·o 𝐿) ∈ N))

Proof of Theorem addassnq0lemcl
StepHypRef Expression
1 pinn 7059 . . . . 5 (𝐿N𝐿 ∈ ω)
2 nnmcl 6329 . . . . 5 ((𝐼 ∈ ω ∧ 𝐿 ∈ ω) → (𝐼 ·o 𝐿) ∈ ω)
31, 2sylan2 282 . . . 4 ((𝐼 ∈ ω ∧ 𝐿N) → (𝐼 ·o 𝐿) ∈ ω)
43ad2ant2rl 500 . . 3 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (𝐼 ·o 𝐿) ∈ ω)
5 pinn 7059 . . . . 5 (𝐽N𝐽 ∈ ω)
6 nnmcl 6329 . . . . 5 ((𝐽 ∈ ω ∧ 𝐾 ∈ ω) → (𝐽 ·o 𝐾) ∈ ω)
75, 6sylan 279 . . . 4 ((𝐽N𝐾 ∈ ω) → (𝐽 ·o 𝐾) ∈ ω)
87ad2ant2lr 499 . . 3 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (𝐽 ·o 𝐾) ∈ ω)
9 nnacl 6328 . . 3 (((𝐼 ·o 𝐿) ∈ ω ∧ (𝐽 ·o 𝐾) ∈ ω) → ((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω)
104, 8, 9syl2anc 406 . 2 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → ((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω)
11 mulpiord 7067 . . . 4 ((𝐽N𝐿N) → (𝐽 ·N 𝐿) = (𝐽 ·o 𝐿))
12 mulclpi 7078 . . . 4 ((𝐽N𝐿N) → (𝐽 ·N 𝐿) ∈ N)
1311, 12eqeltrrd 2190 . . 3 ((𝐽N𝐿N) → (𝐽 ·o 𝐿) ∈ N)
1413ad2ant2l 497 . 2 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (𝐽 ·o 𝐿) ∈ N)
1510, 14jca 302 1 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω ∧ (𝐽 ·o 𝐿) ∈ N))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1461  ωcom 4462  (class class class)co 5726   +o coa 6262   ·o comu 6263  Ncnpi 7022   ·N cmi 7024
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-iord 4246  df-on 4248  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-irdg 6219  df-oadd 6269  df-omul 6270  df-ni 7054  df-mi 7056
This theorem is referenced by:  addassnq0  7212
  Copyright terms: Public domain W3C validator