ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassnq0lemcl GIF version

Theorem addassnq0lemcl 7423
Description: A natural number closure law. Lemma for addassnq0 7424. (Contributed by Jim Kingdon, 3-Dec-2019.)
Assertion
Ref Expression
addassnq0lemcl (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω ∧ (𝐽 ·o 𝐿) ∈ N))

Proof of Theorem addassnq0lemcl
StepHypRef Expression
1 pinn 7271 . . . . 5 (𝐿N𝐿 ∈ ω)
2 nnmcl 6460 . . . . 5 ((𝐼 ∈ ω ∧ 𝐿 ∈ ω) → (𝐼 ·o 𝐿) ∈ ω)
31, 2sylan2 284 . . . 4 ((𝐼 ∈ ω ∧ 𝐿N) → (𝐼 ·o 𝐿) ∈ ω)
43ad2ant2rl 508 . . 3 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (𝐼 ·o 𝐿) ∈ ω)
5 pinn 7271 . . . . 5 (𝐽N𝐽 ∈ ω)
6 nnmcl 6460 . . . . 5 ((𝐽 ∈ ω ∧ 𝐾 ∈ ω) → (𝐽 ·o 𝐾) ∈ ω)
75, 6sylan 281 . . . 4 ((𝐽N𝐾 ∈ ω) → (𝐽 ·o 𝐾) ∈ ω)
87ad2ant2lr 507 . . 3 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (𝐽 ·o 𝐾) ∈ ω)
9 nnacl 6459 . . 3 (((𝐼 ·o 𝐿) ∈ ω ∧ (𝐽 ·o 𝐾) ∈ ω) → ((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω)
104, 8, 9syl2anc 409 . 2 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → ((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω)
11 mulpiord 7279 . . . 4 ((𝐽N𝐿N) → (𝐽 ·N 𝐿) = (𝐽 ·o 𝐿))
12 mulclpi 7290 . . . 4 ((𝐽N𝐿N) → (𝐽 ·N 𝐿) ∈ N)
1311, 12eqeltrrd 2248 . . 3 ((𝐽N𝐿N) → (𝐽 ·o 𝐿) ∈ N)
1413ad2ant2l 505 . 2 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (𝐽 ·o 𝐿) ∈ N)
1510, 14jca 304 1 (((𝐼 ∈ ω ∧ 𝐽N) ∧ (𝐾 ∈ ω ∧ 𝐿N)) → (((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω ∧ (𝐽 ·o 𝐿) ∈ N))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141  ωcom 4574  (class class class)co 5853   +o coa 6392   ·o comu 6393  Ncnpi 7234   ·N cmi 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-ni 7266  df-mi 7268
This theorem is referenced by:  addassnq0  7424
  Copyright terms: Public domain W3C validator