| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2rl | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantlr 477 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: fvtp1g 5846 fcof1o 5912 infnfi 7053 addcomnqg 7564 addassnqg 7565 nqtri3or 7579 ltexnqq 7591 nqnq0pi 7621 nqpnq0nq 7636 nqnq0a 7637 addassnq0lemcl 7644 ltaddpr 7780 ltexprlemloc 7790 addcanprlemu 7798 recexprlem1ssu 7817 aptiprleml 7822 mulcomsrg 7940 mulasssrg 7941 distrsrg 7942 aptisr 7962 mulcnsr 8018 cnegex 8320 muladd 8526 lemul12b 9004 qaddcl 9826 iooshf 10144 elfzomelpfzo 10432 expnegzap 10790 swrdccatin1 11252 setscom 13067 grplmulf1o 13602 lmodfopne 14284 cnpnei 14887 cxplt3 15588 cxple3 15589 umgr2edg 15999 |
| Copyright terms: Public domain | W3C validator |