Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ad2ant2rl | GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 470 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantlr 469 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: fvtp1g 5693 fcof1o 5757 infnfi 6861 addcomnqg 7322 addassnqg 7323 nqtri3or 7337 ltexnqq 7349 nqnq0pi 7379 nqpnq0nq 7394 nqnq0a 7395 addassnq0lemcl 7402 ltaddpr 7538 ltexprlemloc 7548 addcanprlemu 7556 recexprlem1ssu 7575 aptiprleml 7580 mulcomsrg 7698 mulasssrg 7699 distrsrg 7700 aptisr 7720 mulcnsr 7776 cnegex 8076 muladd 8282 lemul12b 8756 qaddcl 9573 iooshf 9888 elfzomelpfzo 10166 expnegzap 10489 setscom 12434 cnpnei 12869 cxplt3 13490 cxple3 13491 |
Copyright terms: Public domain | W3C validator |