| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2rl | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantlr 477 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: fvtp1g 5773 fcof1o 5839 infnfi 6965 addcomnqg 7465 addassnqg 7466 nqtri3or 7480 ltexnqq 7492 nqnq0pi 7522 nqpnq0nq 7537 nqnq0a 7538 addassnq0lemcl 7545 ltaddpr 7681 ltexprlemloc 7691 addcanprlemu 7699 recexprlem1ssu 7718 aptiprleml 7723 mulcomsrg 7841 mulasssrg 7842 distrsrg 7843 aptisr 7863 mulcnsr 7919 cnegex 8221 muladd 8427 lemul12b 8905 qaddcl 9726 iooshf 10044 elfzomelpfzo 10324 expnegzap 10682 setscom 12743 grplmulf1o 13276 lmodfopne 13958 cnpnei 14539 cxplt3 15240 cxple3 15241 |
| Copyright terms: Public domain | W3C validator |