ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad2ant2rl GIF version

Theorem ad2ant2rl 511
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.)
Hypothesis
Ref Expression
ad2ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad2ant2rl (((𝜑𝜃) ∧ (𝜏𝜓)) → 𝜒)

Proof of Theorem ad2ant2rl
StepHypRef Expression
1 ad2ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantrl 478 . 2 ((𝜑 ∧ (𝜏𝜓)) → 𝜒)
32adantlr 477 1 (((𝜑𝜃) ∧ (𝜏𝜓)) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  fvtp1g  5792  fcof1o  5858  infnfi  6992  addcomnqg  7494  addassnqg  7495  nqtri3or  7509  ltexnqq  7521  nqnq0pi  7551  nqpnq0nq  7566  nqnq0a  7567  addassnq0lemcl  7574  ltaddpr  7710  ltexprlemloc  7720  addcanprlemu  7728  recexprlem1ssu  7747  aptiprleml  7752  mulcomsrg  7870  mulasssrg  7871  distrsrg  7872  aptisr  7892  mulcnsr  7948  cnegex  8250  muladd  8456  lemul12b  8934  qaddcl  9756  iooshf  10074  elfzomelpfzo  10360  expnegzap  10718  setscom  12872  grplmulf1o  13406  lmodfopne  14088  cnpnei  14691  cxplt3  15392  cxple3  15393
  Copyright terms: Public domain W3C validator