ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad2ant2rl GIF version

Theorem ad2ant2rl 511
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.)
Hypothesis
Ref Expression
ad2ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad2ant2rl (((𝜑𝜃) ∧ (𝜏𝜓)) → 𝜒)

Proof of Theorem ad2ant2rl
StepHypRef Expression
1 ad2ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantrl 478 . 2 ((𝜑 ∧ (𝜏𝜓)) → 𝜒)
32adantlr 477 1 (((𝜑𝜃) ∧ (𝜏𝜓)) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  fvtp1g  5815  fcof1o  5881  infnfi  7018  addcomnqg  7529  addassnqg  7530  nqtri3or  7544  ltexnqq  7556  nqnq0pi  7586  nqpnq0nq  7601  nqnq0a  7602  addassnq0lemcl  7609  ltaddpr  7745  ltexprlemloc  7755  addcanprlemu  7763  recexprlem1ssu  7782  aptiprleml  7787  mulcomsrg  7905  mulasssrg  7906  distrsrg  7907  aptisr  7927  mulcnsr  7983  cnegex  8285  muladd  8491  lemul12b  8969  qaddcl  9791  iooshf  10109  elfzomelpfzo  10397  expnegzap  10755  swrdccatin1  11216  setscom  12987  grplmulf1o  13521  lmodfopne  14203  cnpnei  14806  cxplt3  15507  cxple3  15508
  Copyright terms: Public domain W3C validator