ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad2ant2rl GIF version

Theorem ad2ant2rl 511
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.)
Hypothesis
Ref Expression
ad2ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad2ant2rl (((𝜑𝜃) ∧ (𝜏𝜓)) → 𝜒)

Proof of Theorem ad2ant2rl
StepHypRef Expression
1 ad2ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantrl 478 . 2 ((𝜑 ∧ (𝜏𝜓)) → 𝜒)
32adantlr 477 1 (((𝜑𝜃) ∧ (𝜏𝜓)) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  fvtp1g  5846  fcof1o  5912  infnfi  7053  addcomnqg  7564  addassnqg  7565  nqtri3or  7579  ltexnqq  7591  nqnq0pi  7621  nqpnq0nq  7636  nqnq0a  7637  addassnq0lemcl  7644  ltaddpr  7780  ltexprlemloc  7790  addcanprlemu  7798  recexprlem1ssu  7817  aptiprleml  7822  mulcomsrg  7940  mulasssrg  7941  distrsrg  7942  aptisr  7962  mulcnsr  8018  cnegex  8320  muladd  8526  lemul12b  9004  qaddcl  9826  iooshf  10144  elfzomelpfzo  10432  expnegzap  10790  swrdccatin1  11252  setscom  13067  grplmulf1o  13602  lmodfopne  14284  cnpnei  14887  cxplt3  15588  cxple3  15589  umgr2edg  15999
  Copyright terms: Public domain W3C validator