| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2rl | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantlr 477 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: fvtp1g 5773 fcof1o 5839 infnfi 6965 addcomnqg 7467 addassnqg 7468 nqtri3or 7482 ltexnqq 7494 nqnq0pi 7524 nqpnq0nq 7539 nqnq0a 7540 addassnq0lemcl 7547 ltaddpr 7683 ltexprlemloc 7693 addcanprlemu 7701 recexprlem1ssu 7720 aptiprleml 7725 mulcomsrg 7843 mulasssrg 7844 distrsrg 7845 aptisr 7865 mulcnsr 7921 cnegex 8223 muladd 8429 lemul12b 8907 qaddcl 9728 iooshf 10046 elfzomelpfzo 10326 expnegzap 10684 setscom 12745 grplmulf1o 13278 lmodfopne 13960 cnpnei 14563 cxplt3 15264 cxple3 15265 |
| Copyright terms: Public domain | W3C validator |