![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ad2ant2rl | GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantlr 477 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: fvtp1g 5767 fcof1o 5833 infnfi 6953 addcomnqg 7443 addassnqg 7444 nqtri3or 7458 ltexnqq 7470 nqnq0pi 7500 nqpnq0nq 7515 nqnq0a 7516 addassnq0lemcl 7523 ltaddpr 7659 ltexprlemloc 7669 addcanprlemu 7677 recexprlem1ssu 7696 aptiprleml 7701 mulcomsrg 7819 mulasssrg 7820 distrsrg 7821 aptisr 7841 mulcnsr 7897 cnegex 8199 muladd 8405 lemul12b 8882 qaddcl 9703 iooshf 10021 elfzomelpfzo 10301 expnegzap 10647 setscom 12661 grplmulf1o 13149 lmodfopne 13825 cnpnei 14398 cxplt3 15095 cxple3 15096 |
Copyright terms: Public domain | W3C validator |