| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2rl | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantlr 477 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: fvtp1g 5815 fcof1o 5881 infnfi 7018 addcomnqg 7529 addassnqg 7530 nqtri3or 7544 ltexnqq 7556 nqnq0pi 7586 nqpnq0nq 7601 nqnq0a 7602 addassnq0lemcl 7609 ltaddpr 7745 ltexprlemloc 7755 addcanprlemu 7763 recexprlem1ssu 7782 aptiprleml 7787 mulcomsrg 7905 mulasssrg 7906 distrsrg 7907 aptisr 7927 mulcnsr 7983 cnegex 8285 muladd 8491 lemul12b 8969 qaddcl 9791 iooshf 10109 elfzomelpfzo 10397 expnegzap 10755 swrdccatin1 11216 setscom 12987 grplmulf1o 13521 lmodfopne 14203 cnpnei 14806 cxplt3 15507 cxple3 15508 |
| Copyright terms: Public domain | W3C validator |