ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ad2ant2rl GIF version

Theorem ad2ant2rl 508
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.)
Hypothesis
Ref Expression
ad2ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad2ant2rl (((𝜑𝜃) ∧ (𝜏𝜓)) → 𝜒)

Proof of Theorem ad2ant2rl
StepHypRef Expression
1 ad2ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantrl 475 . 2 ((𝜑 ∧ (𝜏𝜓)) → 𝜒)
32adantlr 474 1 (((𝜑𝜃) ∧ (𝜏𝜓)) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  fvtp1g  5704  fcof1o  5768  infnfi  6873  addcomnqg  7343  addassnqg  7344  nqtri3or  7358  ltexnqq  7370  nqnq0pi  7400  nqpnq0nq  7415  nqnq0a  7416  addassnq0lemcl  7423  ltaddpr  7559  ltexprlemloc  7569  addcanprlemu  7577  recexprlem1ssu  7596  aptiprleml  7601  mulcomsrg  7719  mulasssrg  7720  distrsrg  7721  aptisr  7741  mulcnsr  7797  cnegex  8097  muladd  8303  lemul12b  8777  qaddcl  9594  iooshf  9909  elfzomelpfzo  10187  expnegzap  10510  setscom  12456  cnpnei  13013  cxplt3  13634  cxple3  13635
  Copyright terms: Public domain W3C validator