| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2rl | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantlr 477 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: fvtp1g 5792 fcof1o 5858 infnfi 6992 addcomnqg 7494 addassnqg 7495 nqtri3or 7509 ltexnqq 7521 nqnq0pi 7551 nqpnq0nq 7566 nqnq0a 7567 addassnq0lemcl 7574 ltaddpr 7710 ltexprlemloc 7720 addcanprlemu 7728 recexprlem1ssu 7747 aptiprleml 7752 mulcomsrg 7870 mulasssrg 7871 distrsrg 7872 aptisr 7892 mulcnsr 7948 cnegex 8250 muladd 8456 lemul12b 8934 qaddcl 9756 iooshf 10074 elfzomelpfzo 10360 expnegzap 10718 setscom 12872 grplmulf1o 13406 lmodfopne 14088 cnpnei 14691 cxplt3 15392 cxple3 15393 |
| Copyright terms: Public domain | W3C validator |