![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ad2ant2rl | GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantlr 477 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: fvtp1g 5725 fcof1o 5790 infnfi 6895 addcomnqg 7380 addassnqg 7381 nqtri3or 7395 ltexnqq 7407 nqnq0pi 7437 nqpnq0nq 7452 nqnq0a 7453 addassnq0lemcl 7460 ltaddpr 7596 ltexprlemloc 7606 addcanprlemu 7614 recexprlem1ssu 7633 aptiprleml 7638 mulcomsrg 7756 mulasssrg 7757 distrsrg 7758 aptisr 7778 mulcnsr 7834 cnegex 8135 muladd 8341 lemul12b 8818 qaddcl 9635 iooshf 9952 elfzomelpfzo 10231 expnegzap 10554 setscom 12502 grplmulf1o 12944 lmodfopne 13416 cnpnei 13722 cxplt3 14343 cxple3 14344 |
Copyright terms: Public domain | W3C validator |