| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2rl | GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantlr 477 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: fvtp1g 5791 fcof1o 5857 infnfi 6991 addcomnqg 7493 addassnqg 7494 nqtri3or 7508 ltexnqq 7520 nqnq0pi 7550 nqpnq0nq 7565 nqnq0a 7566 addassnq0lemcl 7573 ltaddpr 7709 ltexprlemloc 7719 addcanprlemu 7727 recexprlem1ssu 7746 aptiprleml 7751 mulcomsrg 7869 mulasssrg 7870 distrsrg 7871 aptisr 7891 mulcnsr 7947 cnegex 8249 muladd 8455 lemul12b 8933 qaddcl 9755 iooshf 10073 elfzomelpfzo 10358 expnegzap 10716 setscom 12843 grplmulf1o 13377 lmodfopne 14059 cnpnei 14662 cxplt3 15363 cxple3 15364 |
| Copyright terms: Public domain | W3C validator |