ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2mulnq GIF version

Theorem lt2mulnq 7161
Description: Ordering property of multiplication for positive fractions. (Contributed by Jim Kingdon, 18-Jul-2021.)
Assertion
Ref Expression
lt2mulnq (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)))

Proof of Theorem lt2mulnq
StepHypRef Expression
1 ltmnqg 7157 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
213expa 1164 . . . . 5 (((𝐴Q𝐵Q) ∧ 𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
32adantrr 468 . . . 4 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
4 mulcomnqg 7139 . . . . . . 7 ((𝐶Q𝐴Q) → (𝐶 ·Q 𝐴) = (𝐴 ·Q 𝐶))
54ancoms 266 . . . . . 6 ((𝐴Q𝐶Q) → (𝐶 ·Q 𝐴) = (𝐴 ·Q 𝐶))
65ad2ant2r 498 . . . . 5 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → (𝐶 ·Q 𝐴) = (𝐴 ·Q 𝐶))
7 mulcomnqg 7139 . . . . . . 7 ((𝐶Q𝐵Q) → (𝐶 ·Q 𝐵) = (𝐵 ·Q 𝐶))
87ancoms 266 . . . . . 6 ((𝐵Q𝐶Q) → (𝐶 ·Q 𝐵) = (𝐵 ·Q 𝐶))
98ad2ant2lr 499 . . . . 5 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → (𝐶 ·Q 𝐵) = (𝐵 ·Q 𝐶))
106, 9breq12d 3908 . . . 4 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → ((𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵) ↔ (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐶)))
113, 10bitrd 187 . . 3 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → (𝐴 <Q 𝐵 ↔ (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐶)))
12 ltmnqg 7157 . . . . . 6 ((𝐶Q𝐷Q𝐵Q) → (𝐶 <Q 𝐷 ↔ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)))
13123expa 1164 . . . . 5 (((𝐶Q𝐷Q) ∧ 𝐵Q) → (𝐶 <Q 𝐷 ↔ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)))
1413ancoms 266 . . . 4 ((𝐵Q ∧ (𝐶Q𝐷Q)) → (𝐶 <Q 𝐷 ↔ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)))
1514adantll 465 . . 3 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → (𝐶 <Q 𝐷 ↔ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)))
1611, 15anbi12d 462 . 2 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → ((𝐴 <Q 𝐵𝐶 <Q 𝐷) ↔ ((𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐶) ∧ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))))
17 ltsonq 7154 . . 3 <Q Or Q
18 ltrelnq 7121 . . 3 <Q ⊆ (Q × Q)
1917, 18sotri 4892 . 2 (((𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐶) ∧ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)) → (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))
2016, 19syl6bi 162 1 (((𝐴Q𝐵Q) ∧ (𝐶Q𝐷Q)) → ((𝐴 <Q 𝐵𝐶 <Q 𝐷) → (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1314  wcel 1463   class class class wbr 3895  (class class class)co 5728  Qcnq 7036   ·Q cmq 7039   <Q cltq 7041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-eprel 4171  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-mi 7062  df-lti 7063  df-mpq 7101  df-enq 7103  df-nqqs 7104  df-mqqs 7106  df-ltnqqs 7109
This theorem is referenced by:  mulnqprlemrl  7329  mulnqprlemru  7330
  Copyright terms: Public domain W3C validator