![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lt2mulnq | GIF version |
Description: Ordering property of multiplication for positive fractions. (Contributed by Jim Kingdon, 18-Jul-2021.) |
Ref | Expression |
---|---|
lt2mulnq | ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmnqg 7463 | . . . . . 6 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵))) | |
2 | 1 | 3expa 1205 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵))) |
3 | 2 | adantrr 479 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵))) |
4 | mulcomnqg 7445 | . . . . . . 7 ⊢ ((𝐶 ∈ Q ∧ 𝐴 ∈ Q) → (𝐶 ·Q 𝐴) = (𝐴 ·Q 𝐶)) | |
5 | 4 | ancoms 268 | . . . . . 6 ⊢ ((𝐴 ∈ Q ∧ 𝐶 ∈ Q) → (𝐶 ·Q 𝐴) = (𝐴 ·Q 𝐶)) |
6 | 5 | ad2ant2r 509 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 ·Q 𝐴) = (𝐴 ·Q 𝐶)) |
7 | mulcomnqg 7445 | . . . . . . 7 ⊢ ((𝐶 ∈ Q ∧ 𝐵 ∈ Q) → (𝐶 ·Q 𝐵) = (𝐵 ·Q 𝐶)) | |
8 | 7 | ancoms 268 | . . . . . 6 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐶 ·Q 𝐵) = (𝐵 ·Q 𝐶)) |
9 | 8 | ad2ant2lr 510 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 ·Q 𝐵) = (𝐵 ·Q 𝐶)) |
10 | 6, 9 | breq12d 4043 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵) ↔ (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐶))) |
11 | 3, 10 | bitrd 188 | . . 3 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐴 <Q 𝐵 ↔ (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐶))) |
12 | ltmnqg 7463 | . . . . . 6 ⊢ ((𝐶 ∈ Q ∧ 𝐷 ∈ Q ∧ 𝐵 ∈ Q) → (𝐶 <Q 𝐷 ↔ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))) | |
13 | 12 | 3expa 1205 | . . . . 5 ⊢ (((𝐶 ∈ Q ∧ 𝐷 ∈ Q) ∧ 𝐵 ∈ Q) → (𝐶 <Q 𝐷 ↔ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))) |
14 | 13 | ancoms 268 | . . . 4 ⊢ ((𝐵 ∈ Q ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 <Q 𝐷 ↔ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))) |
15 | 14 | adantll 476 | . . 3 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 <Q 𝐷 ↔ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))) |
16 | 11, 15 | anbi12d 473 | . 2 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ↔ ((𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐶) ∧ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)))) |
17 | ltsonq 7460 | . . 3 ⊢ <Q Or Q | |
18 | ltrelnq 7427 | . . 3 ⊢ <Q ⊆ (Q × Q) | |
19 | 17, 18 | sotri 5062 | . 2 ⊢ (((𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐶) ∧ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)) → (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)) |
20 | 16, 19 | biimtrdi 163 | 1 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 Qcnq 7342 ·Q cmq 7345 <Q cltq 7347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-mi 7368 df-lti 7369 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-mqqs 7412 df-ltnqqs 7415 |
This theorem is referenced by: mulnqprlemrl 7635 mulnqprlemru 7636 |
Copyright terms: Public domain | W3C validator |