| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lt2mulnq | GIF version | ||
| Description: Ordering property of multiplication for positive fractions. (Contributed by Jim Kingdon, 18-Jul-2021.) |
| Ref | Expression |
|---|---|
| lt2mulnq | ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmnqg 7556 | . . . . . 6 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵))) | |
| 2 | 1 | 3expa 1208 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵))) |
| 3 | 2 | adantrr 479 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵))) |
| 4 | mulcomnqg 7538 | . . . . . . 7 ⊢ ((𝐶 ∈ Q ∧ 𝐴 ∈ Q) → (𝐶 ·Q 𝐴) = (𝐴 ·Q 𝐶)) | |
| 5 | 4 | ancoms 268 | . . . . . 6 ⊢ ((𝐴 ∈ Q ∧ 𝐶 ∈ Q) → (𝐶 ·Q 𝐴) = (𝐴 ·Q 𝐶)) |
| 6 | 5 | ad2ant2r 509 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 ·Q 𝐴) = (𝐴 ·Q 𝐶)) |
| 7 | mulcomnqg 7538 | . . . . . . 7 ⊢ ((𝐶 ∈ Q ∧ 𝐵 ∈ Q) → (𝐶 ·Q 𝐵) = (𝐵 ·Q 𝐶)) | |
| 8 | 7 | ancoms 268 | . . . . . 6 ⊢ ((𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐶 ·Q 𝐵) = (𝐵 ·Q 𝐶)) |
| 9 | 8 | ad2ant2lr 510 | . . . . 5 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 ·Q 𝐵) = (𝐵 ·Q 𝐶)) |
| 10 | 6, 9 | breq12d 4075 | . . . 4 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵) ↔ (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐶))) |
| 11 | 3, 10 | bitrd 188 | . . 3 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐴 <Q 𝐵 ↔ (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐶))) |
| 12 | ltmnqg 7556 | . . . . . 6 ⊢ ((𝐶 ∈ Q ∧ 𝐷 ∈ Q ∧ 𝐵 ∈ Q) → (𝐶 <Q 𝐷 ↔ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))) | |
| 13 | 12 | 3expa 1208 | . . . . 5 ⊢ (((𝐶 ∈ Q ∧ 𝐷 ∈ Q) ∧ 𝐵 ∈ Q) → (𝐶 <Q 𝐷 ↔ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))) |
| 14 | 13 | ancoms 268 | . . . 4 ⊢ ((𝐵 ∈ Q ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 <Q 𝐷 ↔ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))) |
| 15 | 14 | adantll 476 | . . 3 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → (𝐶 <Q 𝐷 ↔ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))) |
| 16 | 11, 15 | anbi12d 473 | . 2 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) ↔ ((𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐶) ∧ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)))) |
| 17 | ltsonq 7553 | . . 3 ⊢ <Q Or Q | |
| 18 | ltrelnq 7520 | . . 3 ⊢ <Q ⊆ (Q × Q) | |
| 19 | 17, 18 | sotri 5100 | . 2 ⊢ (((𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐶) ∧ (𝐵 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)) → (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐷)) |
| 20 | 16, 19 | biimtrdi 163 | 1 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 (class class class)co 5974 Qcnq 7435 ·Q cmq 7438 <Q cltq 7440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-mi 7461 df-lti 7462 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-mqqs 7505 df-ltnqqs 7508 |
| This theorem is referenced by: mulnqprlemrl 7728 mulnqprlemru 7729 |
| Copyright terms: Public domain | W3C validator |