ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiunsnnn GIF version

Theorem fiunsnnn 6951
Description: Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.)
Assertion
Ref Expression
fiunsnnn (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁)

Proof of Theorem fiunsnnn
StepHypRef Expression
1 simprr 531 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → 𝐴𝑁)
2 en2sn 6881 . . . 4 ((𝐵 ∈ (V ∖ 𝐴) ∧ 𝑁 ∈ ω) → {𝐵} ≈ {𝑁})
32ad2ant2lr 510 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → {𝐵} ≈ {𝑁})
4 simplr 528 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → 𝐵 ∈ (V ∖ 𝐴))
54eldifbd 3169 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → ¬ 𝐵𝐴)
6 disjsn 3685 . . . 4 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
75, 6sylibr 134 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → (𝐴 ∩ {𝐵}) = ∅)
8 elirr 4578 . . . . 5 ¬ 𝑁𝑁
9 disjsn 3685 . . . . 5 ((𝑁 ∩ {𝑁}) = ∅ ↔ ¬ 𝑁𝑁)
108, 9mpbir 146 . . . 4 (𝑁 ∩ {𝑁}) = ∅
1110a1i 9 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → (𝑁 ∩ {𝑁}) = ∅)
12 unen 6884 . . 3 (((𝐴𝑁 ∧ {𝐵} ≈ {𝑁}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ (𝑁 ∩ {𝑁}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ (𝑁 ∪ {𝑁}))
131, 3, 7, 11, 12syl22anc 1250 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → (𝐴 ∪ {𝐵}) ≈ (𝑁 ∪ {𝑁}))
14 df-suc 4407 . 2 suc 𝑁 = (𝑁 ∪ {𝑁})
1513, 14breqtrrdi 4076 1 (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  cdif 3154  cun 3155  cin 3156  c0 3451  {csn 3623   class class class wbr 4034  suc csuc 4401  ωcom 4627  cen 6806  Fincfn 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-1o 6483  df-er 6601  df-en 6809
This theorem is referenced by:  php5fin  6952  hashunlem  10913
  Copyright terms: Public domain W3C validator