| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fiunsnnn | GIF version | ||
| Description: Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.) |
| Ref | Expression |
|---|---|
| fiunsnnn | ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 531 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → 𝐴 ≈ 𝑁) | |
| 2 | en2sn 6929 | . . . 4 ⊢ ((𝐵 ∈ (V ∖ 𝐴) ∧ 𝑁 ∈ ω) → {𝐵} ≈ {𝑁}) | |
| 3 | 2 | ad2ant2lr 510 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → {𝐵} ≈ {𝑁}) |
| 4 | simplr 528 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → 𝐵 ∈ (V ∖ 𝐴)) | |
| 5 | 4 | eldifbd 3186 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → ¬ 𝐵 ∈ 𝐴) |
| 6 | disjsn 3705 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
| 7 | 5, 6 | sylibr 134 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝐴 ∩ {𝐵}) = ∅) |
| 8 | elirr 4607 | . . . . 5 ⊢ ¬ 𝑁 ∈ 𝑁 | |
| 9 | disjsn 3705 | . . . . 5 ⊢ ((𝑁 ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ 𝑁) | |
| 10 | 8, 9 | mpbir 146 | . . . 4 ⊢ (𝑁 ∩ {𝑁}) = ∅ |
| 11 | 10 | a1i 9 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝑁 ∩ {𝑁}) = ∅) |
| 12 | unen 6932 | . . 3 ⊢ (((𝐴 ≈ 𝑁 ∧ {𝐵} ≈ {𝑁}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ (𝑁 ∩ {𝑁}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ (𝑁 ∪ {𝑁})) | |
| 13 | 1, 3, 7, 11, 12 | syl22anc 1251 | . 2 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝐴 ∪ {𝐵}) ≈ (𝑁 ∪ {𝑁})) |
| 14 | df-suc 4436 | . 2 ⊢ suc 𝑁 = (𝑁 ∪ {𝑁}) | |
| 15 | 13, 14 | breqtrrdi 4101 | 1 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ∖ cdif 3171 ∪ cun 3172 ∩ cin 3173 ∅c0 3468 {csn 3643 class class class wbr 4059 suc csuc 4430 ωcom 4656 ≈ cen 6848 Fincfn 6850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-1o 6525 df-er 6643 df-en 6851 |
| This theorem is referenced by: php5fin 7005 hashunlem 10986 |
| Copyright terms: Public domain | W3C validator |