Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fiunsnnn | GIF version |
Description: Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.) |
Ref | Expression |
---|---|
fiunsnnn | ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 531 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → 𝐴 ≈ 𝑁) | |
2 | en2sn 6803 | . . . 4 ⊢ ((𝐵 ∈ (V ∖ 𝐴) ∧ 𝑁 ∈ ω) → {𝐵} ≈ {𝑁}) | |
3 | 2 | ad2ant2lr 510 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → {𝐵} ≈ {𝑁}) |
4 | simplr 528 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → 𝐵 ∈ (V ∖ 𝐴)) | |
5 | 4 | eldifbd 3139 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → ¬ 𝐵 ∈ 𝐴) |
6 | disjsn 3651 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
7 | 5, 6 | sylibr 134 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝐴 ∩ {𝐵}) = ∅) |
8 | elirr 4534 | . . . . 5 ⊢ ¬ 𝑁 ∈ 𝑁 | |
9 | disjsn 3651 | . . . . 5 ⊢ ((𝑁 ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ 𝑁) | |
10 | 8, 9 | mpbir 146 | . . . 4 ⊢ (𝑁 ∩ {𝑁}) = ∅ |
11 | 10 | a1i 9 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝑁 ∩ {𝑁}) = ∅) |
12 | unen 6806 | . . 3 ⊢ (((𝐴 ≈ 𝑁 ∧ {𝐵} ≈ {𝑁}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ (𝑁 ∩ {𝑁}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ (𝑁 ∪ {𝑁})) | |
13 | 1, 3, 7, 11, 12 | syl22anc 1239 | . 2 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝐴 ∪ {𝐵}) ≈ (𝑁 ∪ {𝑁})) |
14 | df-suc 4365 | . 2 ⊢ suc 𝑁 = (𝑁 ∪ {𝑁}) | |
15 | 13, 14 | breqtrrdi 4040 | 1 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 Vcvv 2735 ∖ cdif 3124 ∪ cun 3125 ∩ cin 3126 ∅c0 3420 {csn 3589 class class class wbr 3998 suc csuc 4359 ωcom 4583 ≈ cen 6728 Fincfn 6730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-suc 4365 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-1o 6407 df-er 6525 df-en 6731 |
This theorem is referenced by: php5fin 6872 hashunlem 10752 |
Copyright terms: Public domain | W3C validator |