| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fiunsnnn | GIF version | ||
| Description: Adding one element to a finite set which is equinumerous to a natural number. (Contributed by Jim Kingdon, 13-Sep-2021.) |
| Ref | Expression |
|---|---|
| fiunsnnn | ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 531 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → 𝐴 ≈ 𝑁) | |
| 2 | en2sn 6966 | . . . 4 ⊢ ((𝐵 ∈ (V ∖ 𝐴) ∧ 𝑁 ∈ ω) → {𝐵} ≈ {𝑁}) | |
| 3 | 2 | ad2ant2lr 510 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → {𝐵} ≈ {𝑁}) |
| 4 | simplr 528 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → 𝐵 ∈ (V ∖ 𝐴)) | |
| 5 | 4 | eldifbd 3209 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → ¬ 𝐵 ∈ 𝐴) |
| 6 | disjsn 3728 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
| 7 | 5, 6 | sylibr 134 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝐴 ∩ {𝐵}) = ∅) |
| 8 | elirr 4633 | . . . . 5 ⊢ ¬ 𝑁 ∈ 𝑁 | |
| 9 | disjsn 3728 | . . . . 5 ⊢ ((𝑁 ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ 𝑁) | |
| 10 | 8, 9 | mpbir 146 | . . . 4 ⊢ (𝑁 ∩ {𝑁}) = ∅ |
| 11 | 10 | a1i 9 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝑁 ∩ {𝑁}) = ∅) |
| 12 | unen 6969 | . . 3 ⊢ (((𝐴 ≈ 𝑁 ∧ {𝐵} ≈ {𝑁}) ∧ ((𝐴 ∩ {𝐵}) = ∅ ∧ (𝑁 ∩ {𝑁}) = ∅)) → (𝐴 ∪ {𝐵}) ≈ (𝑁 ∪ {𝑁})) | |
| 13 | 1, 3, 7, 11, 12 | syl22anc 1272 | . 2 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝐴 ∪ {𝐵}) ≈ (𝑁 ∪ {𝑁})) |
| 14 | df-suc 4462 | . 2 ⊢ suc 𝑁 = (𝑁 ∪ {𝑁}) | |
| 15 | 13, 14 | breqtrrdi 4125 | 1 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ∈ (V ∖ 𝐴)) ∧ (𝑁 ∈ ω ∧ 𝐴 ≈ 𝑁)) → (𝐴 ∪ {𝐵}) ≈ suc 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∖ cdif 3194 ∪ cun 3195 ∩ cin 3196 ∅c0 3491 {csn 3666 class class class wbr 4083 suc csuc 4456 ωcom 4682 ≈ cen 6885 Fincfn 6887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-1o 6562 df-er 6680 df-en 6888 |
| This theorem is referenced by: php5fin 7044 hashunlem 11026 |
| Copyright terms: Public domain | W3C validator |